A mixed virtual element method for the vibration problem of clamped Kirchhoff plate

被引:13
作者
Meng, Jian [1 ]
Mei, Liquan [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
关键词
Virtual element method; Polygonal meshes; Biharmonic eigenvalue problem; Spectral approximation; Error estimates; 2ND-ORDER ELLIPTIC PROBLEMS; SPECTRAL APPROXIMATION; EIGENVALUE PROBLEMS; GALERKIN METHODS; FORMULATION;
D O I
10.1007/s10444-020-09810-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we give a presentation of virtual element method for the approximation of the vibration problem of clamped Kirchhoff plate, which involves the biharmonic eigenvalue problem. Following the theory of Babuska and Osborn, the error estimates of the discrete scheme for the degree k >= 2 of polynomials are standard results. However, when considering the case k= 1, we can not apply the technical framework of classical eigenvalue problem directly. Based on the spectral approximation theory, the theory of mixed virtual element method and mixed finite element method for the Stokes problem, the convergence analysis for eigenvalues and eigenfunctions is analyzed and proved. Finally, some numerical experiments are reported to show that the proposed numerical scheme can achieve the optimal convergence order.
引用
收藏
页数:18
相关论文
共 56 条
[1]   Equivalent projectors for virtual element methods [J].
Ahmad, B. ;
Alsaedi, A. ;
Brezzi, F. ;
Marini, L. D. ;
Russo, A. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (03) :376-391
[2]   A C1 VIRTUAL ELEMENT METHOD FOR THE CAHN-HILLIARD EQUATION WITH POLYGONAL MESHES [J].
Antonietti, P. F. ;
Da Veiga, L. Beirao ;
Scacchi, S. ;
Verani, M. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (01) :34-56
[3]   A STREAM VIRTUAL ELEMENT FORMULATION OF THE STOKES PROBLEM ON POLYGONAL MESHES [J].
Antonietti, P. F. ;
da Veiga, L. Beirao ;
Mora, D. ;
Verani, M. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (01) :386-404
[4]   FINITE ELEMENT-GALERKIN APPROXIMATION OF THE EIGENVALUES AND EIGENVECTORS OF SELFADJOINT PROBLEMS [J].
BABUSKA, I ;
OSBORN, JE .
MATHEMATICS OF COMPUTATION, 1989, 52 (186) :275-297
[5]  
Babuska I., 1991, HDB NUMERICAL ANAL, P641
[6]   A virtual element method for the acoustic vibration problem [J].
Beirao da Veiga, Lourenco ;
Mora, David ;
Rivera, Gonzalo ;
Rodriguez, Rodolfo .
NUMERISCHE MATHEMATIK, 2017, 136 (03) :725-763
[7]   Order preserving SUPG stabilization for the virtual element formulation of advection-diffusion problems [J].
Benedetto, M. F. ;
Berrone, S. ;
Borio, A. ;
Pieraccini, S. ;
Scialo, S. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 311 :18-40
[8]   FINITE-ELEMENT VIBRATION ANALYSIS OF FLUID-SOLID SYSTEMS WITHOUT SPURIOUS MODES [J].
BERMUDEZ, A ;
DURAN, R ;
MUSCHIETTI, MA ;
RODRIGUEZ, R ;
SOLOMIN, J .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (04) :1280-1295
[9]  
Boffi D, 2010, ACTA NUMER, V19, P1, DOI 10.1017/S0962492910000012
[10]   SOLVING MAXWELL EQUATIONS IN A CLOSED CAVITY, AND THE QUESTION OF SPURIOUS MODES [J].
BOSSAVIT, A .
IEEE TRANSACTIONS ON MAGNETICS, 1990, 26 (02) :702-705