Phase-field simulation of Li dendrites with multiple parameters influence

被引:44
作者
Gao, Liting [1 ]
Guo, Zhansheng [1 ]
机构
[1] Shanghai Univ, Sch Mech & Engn Sci, Shanghai Inst Appl Math & Mech, Shanghai Key Lab Mech Energy Engn, Shanghai 200072, Peoples R China
基金
美国国家科学基金会;
关键词
Phase-field; Dendritic formation; Anisotropy; Noise; Temperature; IN-SITU OBSERVATION; LITHIUM METAL ANODES; BATTERY DESIGN; THIN-FILM; GROWTH; ION; ELECTRODEPOSITION; TRANSPORT; SURFACE; MODEL;
D O I
10.1016/j.commatsci.2020.109919
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Lithium metal has been regarded as a promising anode material for high theoretical energy batteries. However, the growth of lithium dendrites hinders its commercialization. Lithium dendrite may cause the battery internal short circuit, thermal runaway, even explosion, and other disasters. Here a phase-field model is established to investigate the influence of the Li-ions concentration, anisotropic strength, noise, and internal heat on the growth behaviors of the lithium dendrite. Increasing the consumption of Li-ions concentration, the growth rate of dendrite is faster and the morphology is close to mossy. Adjusting the appropriate anisotropic strength can effectively improve the dendrite structure and reduce the formation of dendrites. Large noise accelerates the formation of dendrite nucleation sites and disordered dendrites. The lithium dendrites grow in the direction of high temperature gradient caused by internal heat. The mechanism of pore evolution with time along with dendrite growth has also been studied.
引用
收藏
页数:8
相关论文
共 58 条
[11]   Noise characterization of surface processes of the Li/organic electrolyte interface [J].
Grafov, BM ;
Kanevskii, LS ;
Astafiev, MG .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2005, 35 (12) :1271-1276
[12]   Simulation and Experiment on Solid Electrolyte Interphase (SEI) Morphology Evolution and Lithium-Ion Diffusion [J].
Guan, Pengjian ;
Liu, Lin ;
Lin, Xianke .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (09) :A1798-A1808
[13]   Direct in situ observation and explanation of lithium dendrite of commercial graphite electrodes [J].
Guo, Zhansheng ;
Zhu, Jianyu ;
Feng, Jiemin ;
Du, Shiyu .
RSC ADVANCES, 2015, 5 (85) :69514-69521
[14]   Phase field modeling of electrochemistry. I. Equilibrium [J].
Guyer, JE ;
Boettinger, WJ ;
Warren, JA ;
McFadden, GB .
PHYSICAL REVIEW E, 2004, 69 (02) :021603-1
[15]   Mechanistic insight into dendrite-SEI interactions for lithium metal electrodes [J].
Hao, Feng ;
Verma, Ankit ;
Mukherjee, Partha P. .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (40) :19664-19671
[16]   Prospect of Thermal Shock Induced Healing of Lithium Dendrite [J].
Hong, Zijian ;
Viswanathan, Venkatasubramanian .
ACS ENERGY LETTERS, 2019, 4 (05) :1012-+
[17]   Phase-Field Simulations of Lithium Dendrite Growth with Open-Source Software [J].
Hong, Zijian ;
Viswanathan, Venkatasubramanian .
ACS ENERGY LETTERS, 2018, 3 (07) :1737-1743
[18]   One-step preparation of poly(ionic liquid)-based flexible electrolytes by in situ polymerization for dendrite -free lithium ion batteries [J].
Huang, Teng ;
Long, Man-Cheng ;
Wang, Xiu-Li ;
Wu, Gang ;
Wang, Yu-Zhong .
CHEMICAL ENGINEERING JOURNAL, 2019, 375
[19]   Parameter sensitivity analysis and cathode structure optimization of a non-aqueous Li-O2 battery model [J].
Jiang, Kai ;
Liu, Xunliang ;
Lou, Guofeng ;
Wen, Zhi ;
Liu, Lin .
JOURNAL OF POWER SOURCES, 2020, 451
[20]   MODELING AND NUMERICAL SIMULATIONS OF DENDRITIC CRYSTAL-GROWTH [J].
KOBAYASHI, R .
PHYSICA D, 1993, 63 (3-4) :410-423