A Reduced Basis for Option Pricing

被引:22
|
作者
Cont, Rama [1 ,2 ]
Lantos, Nicolas [3 ,4 ]
Pironneau, Olivier [3 ]
机构
[1] Univ Paris 06, CNRS, UMR 7599, Lab Probabilites & Modeles Aleatoires, Paris, France
[2] Columbia Univ, IEOR Dept, New York, NY 10027 USA
[3] Univ Paris 06, CNRS, UMR 7598, Lab Jacques Louis Lions, F-75252 Paris, France
[4] Natixis Corp Solut, F-75008 Paris, France
来源
SIAM JOURNAL ON FINANCIAL MATHEMATICS | 2011年 / 2卷 / 01期
关键词
option pricing; PDE; PIDE; integro-differential equation; jump-diffusion; Merton model; Galerkin method; reduced basis;
D O I
10.1137/10079851X
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We introduce a reduced basis method for the efficient numerical solution of partial integro-differential equations (PIDEs) which arise in option pricing theory. Our method constructs the solution as a linear combination of basis functions constructed from a sequence of Black-Scholes solutions with different volatilities. We show that this a priori choice of basis leads to a sparse representation of option pricing functions, yielding an approximation error which decays exponentially in the number of basis functions. A Galerkin method using this basis for solving the pricing PDE is shown to have better numerical performance relative to commonly used finite-difference and finite-element methods for the CEV diffusion model and the Merton jump diffusion model. We also compare our method with a numerical proper orthogonal decomposition (POD). Finally, we show that this approach may be used advantageously for the calibration of local volatility functions.
引用
收藏
页码:287 / 316
页数:30
相关论文
共 50 条
  • [31] Microstructural biases in empirical tests of option pricing models
    Patrick Dennis
    Stewart Mayhew
    Review of Derivatives Research, 2009, 12 : 169 - 191
  • [32] SIMPLIFIED OPTION PRICING TECHNIQUES
    Alghalith, Moawia
    Floros, Christos
    Poufnas, Thomas
    ANNALS OF FINANCIAL ECONOMICS, 2019, 14 (01)
  • [33] Option Pricing and Distribution Characteristics
    Mauler, David J.
    McDonald, James B.
    COMPUTATIONAL ECONOMICS, 2015, 45 (04) : 579 - 595
  • [34] Option pricing with state-dependent pricing kernel
    Tong, Chen
    Hansen, Peter Reinhard
    Huang, Zhuo
    JOURNAL OF FUTURES MARKETS, 2022, 42 (08) : 1409 - 1433
  • [35] The Pricing of European Exchange Option
    Zhang, Shougang
    Yang, Yunfeng
    PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON APPLIED MATHEMATICS, MODELLING AND STATISTICS APPLICATION (AMMSA 2017), 2017, 141 : 245 - 248
  • [36] Alternatives to classical option pricing
    Lindquist, W. Brent
    Rachev, Svetlozar T.
    ANNALS OF OPERATIONS RESEARCH, 2025, 346 (01) : 489 - 509
  • [37] A note on intraday option pricing
    Scalas, Enrico
    Politi, Mauro
    INTERNATIONAL JOURNAL OF APPLIED NONLINEAR SCIENCE, 2013, 1 (01) : 76 - 86
  • [38] Kelly trading and option pricing
    Bermin, Hans-Peter
    Holm, Magnus
    JOURNAL OF FUTURES MARKETS, 2021, 41 (07) : 987 - 1006
  • [39] A solution to the multidimensionality in option pricing
    Alghalith, Moawia
    Wong, Wing Keung
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (07) : 2477 - 2482
  • [40] Option pricing in incomplete markets
    Zhang, Qiang
    Han, Jiguang
    APPLIED MATHEMATICS LETTERS, 2013, 26 (10) : 975 - 978