A Reduced Basis for Option Pricing

被引:22
|
作者
Cont, Rama [1 ,2 ]
Lantos, Nicolas [3 ,4 ]
Pironneau, Olivier [3 ]
机构
[1] Univ Paris 06, CNRS, UMR 7599, Lab Probabilites & Modeles Aleatoires, Paris, France
[2] Columbia Univ, IEOR Dept, New York, NY 10027 USA
[3] Univ Paris 06, CNRS, UMR 7598, Lab Jacques Louis Lions, F-75252 Paris, France
[4] Natixis Corp Solut, F-75008 Paris, France
来源
SIAM JOURNAL ON FINANCIAL MATHEMATICS | 2011年 / 2卷 / 01期
关键词
option pricing; PDE; PIDE; integro-differential equation; jump-diffusion; Merton model; Galerkin method; reduced basis;
D O I
10.1137/10079851X
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We introduce a reduced basis method for the efficient numerical solution of partial integro-differential equations (PIDEs) which arise in option pricing theory. Our method constructs the solution as a linear combination of basis functions constructed from a sequence of Black-Scholes solutions with different volatilities. We show that this a priori choice of basis leads to a sparse representation of option pricing functions, yielding an approximation error which decays exponentially in the number of basis functions. A Galerkin method using this basis for solving the pricing PDE is shown to have better numerical performance relative to commonly used finite-difference and finite-element methods for the CEV diffusion model and the Merton jump diffusion model. We also compare our method with a numerical proper orthogonal decomposition (POD). Finally, we show that this approach may be used advantageously for the calibration of local volatility functions.
引用
收藏
页码:287 / 316
页数:30
相关论文
共 50 条
  • [21] OPTION PRICING WITH PADE APPROXIMATIONS
    Koroglu, Canan
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2012, 61 (02): : 45 - 50
  • [22] Microstructural biases in empirical tests of option pricing models
    Dennis, Patrick
    Mayhew, Stewart
    REVIEW OF DERIVATIVES RESEARCH, 2009, 12 (03) : 169 - 191
  • [23] Option pricing and ARCH processes
    Zumbach, Gilles
    FINANCE RESEARCH LETTERS, 2012, 9 (03) : 144 - 156
  • [24] Option pricing on multiple assets
    Branson, Thomas P.
    Choi, Yang Ho
    ACTA APPLICANDAE MATHEMATICAE, 2006, 94 (02) : 137 - 162
  • [25] Financial Option Pricing on APU
    Doerksen, Matthew
    Solomon, Steven
    Thulasiraman, Parimala
    Thulasiram, Ruppa K.
    CONTEMPORARY COMPUTING, 2012, 306 : 431 - 441
  • [26] Option Pricing with Informed Judgment
    Aboura, Khalid
    Agbinya, Johnson I.
    2013 PAN AFRICAN INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE, COMPUTING AND TELECOMMUNICATIONS (PACT), 2013, : 218 - 223
  • [27] EQUILIBRIUM ASSET AND OPTION PRICING UNDER JUMP DIFFUSION
    Zhang, Jin E.
    Zhao, Huimin
    Chang, Eric C.
    MATHEMATICAL FINANCE, 2012, 22 (03) : 538 - 568
  • [28] Option Pricing and Distribution Characteristics
    David J. Mauler
    James B. McDonald
    Computational Economics, 2015, 45 : 579 - 595
  • [29] OPTION PRICING FOR GENERALIZED DISTRIBUTIONS
    MCDONALD, JB
    BOOKSTABER, RM
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1991, 20 (12) : 4053 - 4068
  • [30] Singular perturbations in option pricing
    Fouque, JP
    Papanicolaou, G
    Sircar, R
    Solna, K
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2003, 63 (05) : 1648 - 1665