A Reduced Basis for Option Pricing

被引:22
|
作者
Cont, Rama [1 ,2 ]
Lantos, Nicolas [3 ,4 ]
Pironneau, Olivier [3 ]
机构
[1] Univ Paris 06, CNRS, UMR 7599, Lab Probabilites & Modeles Aleatoires, Paris, France
[2] Columbia Univ, IEOR Dept, New York, NY 10027 USA
[3] Univ Paris 06, CNRS, UMR 7598, Lab Jacques Louis Lions, F-75252 Paris, France
[4] Natixis Corp Solut, F-75008 Paris, France
来源
SIAM JOURNAL ON FINANCIAL MATHEMATICS | 2011年 / 2卷 / 01期
关键词
option pricing; PDE; PIDE; integro-differential equation; jump-diffusion; Merton model; Galerkin method; reduced basis;
D O I
10.1137/10079851X
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We introduce a reduced basis method for the efficient numerical solution of partial integro-differential equations (PIDEs) which arise in option pricing theory. Our method constructs the solution as a linear combination of basis functions constructed from a sequence of Black-Scholes solutions with different volatilities. We show that this a priori choice of basis leads to a sparse representation of option pricing functions, yielding an approximation error which decays exponentially in the number of basis functions. A Galerkin method using this basis for solving the pricing PDE is shown to have better numerical performance relative to commonly used finite-difference and finite-element methods for the CEV diffusion model and the Merton jump diffusion model. We also compare our method with a numerical proper orthogonal decomposition (POD). Finally, we show that this approach may be used advantageously for the calibration of local volatility functions.
引用
收藏
页码:287 / 316
页数:30
相关论文
共 50 条
  • [1] A reduced basis method for parabolic partial differential equations with parameter functions and application to option pricing
    Mayerhofer, Antonia
    Urban, Karsten
    JOURNAL OF COMPUTATIONAL FINANCE, 2017, 20 (04) : 71 - 106
  • [2] A stable local radial basis function method for option pricing problem under the Bates model
    Company, Rafael
    Egorova, Vera N.
    Jodar, Lucas
    Soleymani, Fazlollah
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2019, 35 (03) : 1035 - 1055
  • [3] A Flexible Galerkin Scheme for Option Pricing in Levy Models
    Gass, Maximilian
    Glau, Kathrin
    SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2018, 9 (03): : 930 - 965
  • [4] A reduced lattice model for option pricing under regime-switching
    Costabile M.
    Leccadito A.
    Massabó I.
    Russo E.
    Review of Quantitative Finance and Accounting, 2014, 42 (4) : 667 - 690
  • [5] Robust option pricing
    Bandi, Chaithanya
    Bertsimas, Dimitris
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2014, 239 (03) : 842 - 853
  • [6] Supersymmetry in option pricing
    Jana, T. K.
    Roy, P.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2011, 390 (12) : 2350 - 2355
  • [7] Martingale option pricing
    McCauley, J. L.
    Gunaratne, G. H.
    Bassler, K. E.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 380 (1-2) : 351 - 356
  • [8] Approximate option pricing
    Chalasani, P
    Jha, S
    Saias, I
    ALGORITHMICA, 1999, 25 (01) : 2 - 21
  • [9] CAPM option pricing
    Husmann, Sven
    Todorova, Neda
    FINANCE RESEARCH LETTERS, 2011, 8 (04): : 213 - 219
  • [10] Asian option pricing
    Svabova, Lucia
    Durica, Marek
    MANAGING AND MODELLING OF FINANCIAL RISKS - 6TH INTERNATIONAL SCIENTIFIC CONFERENCE PROCEEDINGS, PTS 1 AND 2, 2012, : 600 - +