Conserved exitrons of FLAGELLIN-SENSING 2 (FLS2) across dicot plants and their functions

被引:18
作者
Cheng, Qiang [1 ]
Xiao, Hongju [1 ]
Xiong, Qin [1 ]
机构
[1] Nanjing Forestry Univ, Coinnovat Ctr Sustainable Forestry Southern China, Key Lab Forest Genet & Biotechnol, Minist Educ, Nanjing 210037, Peoples R China
基金
中国国家自然科学基金;
关键词
Pattern recognition receptor; Alternative splicing; Exitron; FLS2; Intron mediated enhancement; DNA-SEQUENCES; ARABIDOPSIS; PERCEPTION; IDENTIFICATION; DETERMINES; PROMOTER; INTRONS; SIGNALS;
D O I
10.1016/j.plantsci.2020.110507
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The alternative splicing of pattern recognition receptor genes regulates immune signalling in mammals, but in plants its role is still unknown. Here, we detected alternatively spliced introns (exitrons) in the first annotated exons of FLAGELLIN-SENSING 2 (FLS2) genes in all the examined dicot plants across nine families. The 5' splice site (SS) regions were conserved and with rare synonymous substitutions. Point mutations and gene swaps indicated that the position and efficiency of exitron splicing primarily depended on the nucleotide sequences of FLS2 genes. Single-nucleotide mutations in the invariable codon carrying 5' SS dramatically altered the accumulation of poplar and tomato FLS2 transcripts, indicating the 5'-proximal exitrons of FLS2 function as stimulatory introns on gene expression. The 3' SSs of exitrons are diverse and can be changed by 1-2 nucleotide mutations in Salicaceae FLS2. The alternative transcripts (ATs) of poplar and tobacco FLS2, which encode small secreted proteins, were specifically induced by flg22, and one such AT from tobacco FLS2 suppressed flg22-induced response. Our results indicated that the exitrons of FLS2 genes regulate the accumulation of transcripts by an intron mediated enhancement (IME) mechanism and some ATs have the potential to encode suppressors for FLS2 pathway.
引用
收藏
页数:10
相关论文
共 39 条
[1]   U1 snRNP Determines mRNA Length and Regulates Isoform Expression [J].
Berg, Michael G. ;
Singh, Larry N. ;
Younis, Ihab ;
Liu, Qiang ;
Pinto, Anna Maria ;
Kaida, Daisuke ;
Zhang, Zhenxi ;
Cho, Sungchan ;
Sherrill-Mix, Scott ;
Wan, Lili ;
Dreyfuss, Gideon .
CELL, 2012, 150 (01) :53-64
[2]   A Renaissance of Elicitors: Perception of Microbe-Associated Molecular Patterns and Danger Signals by Pattern-Recognition Receptors [J].
Boller, Thomas ;
Felix, Georg .
ANNUAL REVIEW OF PLANT BIOLOGY, 2009, 60 :379-406
[3]   Post-transcriptional regulation of gene expression in innate immunity [J].
Carpenter, Susan ;
Ricci, Emiliano P. ;
Mercier, Blandine C. ;
Moore, Melissa J. ;
Fitzgerald, Katherine A. .
NATURE REVIEWS IMMUNOLOGY, 2014, 14 (06) :361-376
[4]   The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception [J].
Chinchilla, D ;
Bauer, Z ;
Regenass, M ;
Boller, T ;
Felix, G .
PLANT CELL, 2006, 18 (02) :465-476
[5]   A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence [J].
Chinchilla, Delphine ;
Zipfel, Cyril ;
Robatzek, Silke ;
Kemmerling, Birgit ;
Nuernberger, Thorsten ;
Jones, Jonathan D. G. ;
Felix, Georg ;
Boller, Thomas .
NATURE, 2007, 448 (7152) :497-U12
[6]   Transcriptional Pause Sites Delineate Stable Nucleosome-Associated Premature Polyadenylation Suppressed by U1 snRNP [J].
Chiu, Anthony C. ;
Suzuki, Hiroshi I. ;
Wu, Xuebing ;
Mahat, Dig B. ;
Kriz, Andrea J. ;
Sharp, Phillip A. .
MOLECULAR CELL, 2018, 69 (04) :648-+
[7]   Regulation of pattern recognition receptor signalling in plants [J].
Couto, Daniel ;
Zipfel, Cyril .
NATURE REVIEWS IMMUNOLOGY, 2016, 16 (09) :537-552
[8]   WebLogo: A sequence logo generator [J].
Crooks, GE ;
Hon, G ;
Chandonia, JM ;
Brenner, SE .
GENOME RESEARCH, 2004, 14 (06) :1188-1190
[9]   Alternatively spliced N resistance gene transcripts:: Their possible role in tobacco mosaic virus resistance [J].
Dinesh-Kumar, SP ;
Baker, BJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (04) :1908-1913
[10]   Identification and mutational analysis of Arabidopsis FLS2 leucine-rich repeat domain residues that contribute to flagellin perception [J].
Dunning, F. Mark ;
Sun, Wenxian ;
Jansen, Kristin L. ;
Helft, Laura ;
Bent, Andrew F. .
PLANT CELL, 2007, 19 (10) :3297-3313