Analyzing efficiency of optical and THz infrared thermography in nondestructive testing of GFRPs by using the Tanimoto criterion

被引:9
作者
Chulkov, A. O. [1 ]
Sommier, A. [2 ]
Pradere, C. [2 ]
Vavilov, V. P. [1 ]
Siddiqui, A. O. [3 ]
Prasad, Y. L. V. D. [3 ]
机构
[1] Natl Res Tomsk Polytech Univ Tomsk, Lenin Av 30, Tomsk 634050, Russia
[2] CNRS, UMR I2M, ENSAM, UB 5295,Esplanade Arts & Metiers, F-33405 Talence, France
[3] Adv Syst Lab, Kanchanbagh PO, Hyderabad 500058, Telangana, India
基金
俄罗斯科学基金会;
关键词
Infrared thermography; Terahertz imaging; GFRP; Tanimoto criterion; Nondestructive testing; DEFECTS; INSPECTION;
D O I
10.1016/j.ndteint.2020.102383
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This study has illustrated the potentials of optical and THz infrared thermography in the identification of inserts of different nature in glass fiber reinforced polymer. The inspection efficiency has been comparatively evaluated by applying the Tanimoto criterion. The best test procedure has proven to be one-sided stationary thermal nondestructive testing (TNDT) implementing optical heating with Xenon lamps (Tanimoto criterion 87%). Close values of the Tanimoto criterion have been achieved by using the optical and THz line-scanning procedures. A more subjective evaluation of test procedures has been performed by comparing eight parameters of test performance. The line-scanning TNDT procedure implementing optical heating with halogen lamps seems to be optimal in practical applications.
引用
收藏
页数:10
相关论文
共 33 条
[1]   Long pulse excitation thermographic non-destructive evaluation [J].
Almond, Darryl P. ;
Angioni, Stefano L. ;
Pickering, Simon G. .
NDT & E INTERNATIONAL, 2017, 87 :7-14
[2]  
[Anonymous], NDT CAN 2015 C EDM C
[3]  
[Anonymous], 2016, LAYER 3 AN OP MAN, P28
[4]   Digitised Frequency Modulated Thermal Wave Imaging for Non-destructive Testing and Evaluation of Glass Fibre Reinforced Polymers [J].
Arora, Vanita ;
Mulaveesala, Ravibabu ;
Rani, Anju ;
Sharma, Anshul .
NONDESTRUCTIVE TESTING AND EVALUATION, 2019, 34 (01) :23-32
[5]   Improvement of the detection of defects by pulse thermography thanks to the TSR approach in the case of a smart composite repair patch [J].
Balageas, Daniel ;
Chapuis, Bastien ;
Deban, Geoffrey ;
Passilly, Francoise .
QIRT JOURNAL, 2010, 7 (02) :167-187
[6]  
Balageas DL, 2017, MATER EVAL, V75, P1019
[7]   Water detection in honeycomb composite structures using terahertz thermography [J].
Chulkov, A. O. ;
Gaverina, L. ;
Pradere, C. ;
Batsale, J. -C. ;
Vavilov, V. P. .
RUSSIAN JOURNAL OF NONDESTRUCTIVE TESTING, 2015, 51 (08) :520-523
[8]   Recent Advances in Active Infrared Thermography for Non-Destructive Testing of Aerospace Components [J].
Ciampa, Francesco ;
Mahmoodi, Pooya ;
Pinto, Fulvio ;
Meo, Michele .
SENSORS, 2018, 18 (02)
[9]   Quantitative analysis of thermographic data through different algorithms [J].
D'Accardi, E. ;
Palumbo, D. ;
Tamborrino, R. ;
Galietti, U. .
AIAS2017 - 46TH CONFERENCE ON STRESS ANALYSIS AND MECHANICAL ENGINEERING DESIGN, 2018, 8 :354-367
[10]   Terahertz Radome Inspection [J].
Friederich, Fabian ;
May, Karl Henrik ;
Baccouche, Bessem ;
Matheis, Carsten ;
Bauer, Maris ;
Jonuscheit, Joachim ;
Moor, Michael ;
Denman, David ;
Bramble, Jamie ;
Savage, Nick .
PHOTONICS, 2018, 5 (01)