Angle measurement based on in-line digital holographic reconstruction

被引:5
作者
Yu, Hai [1 ]
机构
[1] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, Changchun 130033, Peoples R China
基金
中国国家自然科学基金;
关键词
Holographic technology; Reconstruction; Angle measurement; Interference; MICROSCOPY; SENSOR;
D O I
10.1016/j.optlaseng.2020.106385
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Using digital holography technology to reconstruct the optical information of the calibrated grating, the grating pattern can be magnified without an optical lens. This greatly reduces the volume and complexity of the image angular displacement measurement device. This paper proposes an angular displacement measurement technology based on in-line digital holographic reconstruction. The wavefront recording of the calibrated grating holographic interference fringes can be realized in a small volume; the wavefront is reconstructed via algorithm, then the coded information on the calibrated grating is recognized based on the reconstructed light wave. The recognition and angle calculation of coded lines was successful in an experiment on 1024 period calibrated circular gratings, and 1.24 '' measurement resolution is achieved by the subdivision algorithm. This study may represent a workable foundation for future small-volume and high-resolution angular displacement measurement technology.
引用
收藏
页数:5
相关论文
共 50 条
[31]   Resolution enhancement in digital in-line holography with sparsity [J].
Yang, Yuchi ;
Lian, Qiusheng ;
Liu, Shuo ;
Shi, Baoshun ;
Fan, Xiaoyu .
OPTICAL ENGINEERING, 2018, 57 (07)
[32]   Resolution Enhancement in Terahertz Digital In-line Holography by Sparsity-Based Extrapolation [J].
Li, Zeyu ;
Yan, Qiang ;
Qin, Yu ;
Kong, Weipeng ;
Zou, Mingrui ;
Zhou, Xun ;
You, Zhisheng ;
Cheng, Peng .
JOURNAL OF INFRARED MILLIMETER AND TERAHERTZ WAVES, 2021, 42 (05) :479-492
[33]   Quantitative phase and refractive index measurements with point-source digital in-line holographic microscopy [J].
Jericho, M. H. ;
Kreuzer, H. J. ;
Kanka, M. ;
Riesenberg, R. .
APPLIED OPTICS, 2012, 51 (10) :1503-1515
[34]   Accurate automatic object 4D tracking in digital in-line holographic microscopy based on computationally rendered dark fields [J].
Rogalski, Mikolaj ;
Angel Picazo-Bueno, Jose ;
Winnik, Julianna ;
Zdankowski, Piotr ;
Mico, Vicente ;
Trusiak, Maciej .
SCIENTIFIC REPORTS, 2022, 12 (01)
[35]   Accurate reconstruction in measurement of micro-structures using digital holographic microscopy [J].
Zhang, Xiaolei ;
Zhang, Xiangchao ;
Xiao, Hong ;
Xu, Min .
OPTICAL METROLOGY AND INSPECTION FOR INDUSTRIAL APPLICATIONS IV, 2016, 10023
[36]   Particle Characterization and Classification Device Based on Digital in-Line Holography [J].
Zhang Wenxuan ;
Zhang Jinying ;
Li Jingwen .
LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (14)
[37]   Multispectral Microimaging System Based on Gabor In-line Digital Holography [J].
Li, Xinyu ;
Fei, Feng ;
Meng, Haoran ;
Xu, Cui ;
Lu, Shi ;
Xuan, Yang ;
Yang, Haigui .
LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (16)
[38]   Twin image removal in digital in-line holography based on iterative inter-projections [J].
Chen, Bing Kuan ;
Chen, Tai-Yu ;
Hung, Shau Gang ;
Huang, Sheng-Lung ;
Lin, Jiunn-Yuan .
JOURNAL OF OPTICS, 2016, 18 (06)
[39]   Digital in-line holography with a spatially partially coherent beam [J].
Coeetmellec, S. ;
Remacha, C. ;
Brunel, M. ;
Lebrun, D. ;
Janssen, A. J. E. M. .
JOURNAL OF THE EUROPEAN OPTICAL SOCIETY-RAPID PUBLICATIONS, 2011, 6 :1
[40]   Application of inverse Abel techniques in in-line holographic microscopy [J].
Apostolopoulos, M. I. ;
Taroudakis, M. I. ;
Papazoglou, D. G. .
OPTICS COMMUNICATIONS, 2013, 296 :25-34