Angle measurement based on in-line digital holographic reconstruction

被引:5
作者
Yu, Hai [1 ]
机构
[1] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, Changchun 130033, Peoples R China
基金
中国国家自然科学基金;
关键词
Holographic technology; Reconstruction; Angle measurement; Interference; MICROSCOPY; SENSOR;
D O I
10.1016/j.optlaseng.2020.106385
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Using digital holography technology to reconstruct the optical information of the calibrated grating, the grating pattern can be magnified without an optical lens. This greatly reduces the volume and complexity of the image angular displacement measurement device. This paper proposes an angular displacement measurement technology based on in-line digital holographic reconstruction. The wavefront recording of the calibrated grating holographic interference fringes can be realized in a small volume; the wavefront is reconstructed via algorithm, then the coded information on the calibrated grating is recognized based on the reconstructed light wave. The recognition and angle calculation of coded lines was successful in an experiment on 1024 period calibrated circular gratings, and 1.24 '' measurement resolution is achieved by the subdivision algorithm. This study may represent a workable foundation for future small-volume and high-resolution angular displacement measurement technology.
引用
收藏
页数:5
相关论文
共 50 条
[21]   Calibration of a digital in-line holographic microscopy system: depth of focus and bioprocess analysis [J].
Ryle, James P. ;
McDonnell, Susan ;
Glennon, Brian ;
Sheridan, John T. .
APPLIED OPTICS, 2013, 52 (07) :C78-C87
[22]   Estimation of parameters for evaluating subsurface microcracks in glass with in-line digital holographic microscopy [J].
Wu, Xiupin ;
Gao, Wanrong ;
He, Yong .
APPLIED OPTICS, 2016, 55 (03) :A32-A42
[23]   One-shot dual-wavelength in-line digital holographic microscopy [J].
Leon-Rodriguez, Miguel ;
Rodriguez-Vera, Ramon ;
Rayas, Juan A. ;
Flores-Moreno, J. M. .
OPTICS AND LASERS IN ENGINEERING, 2013, 51 (07) :883-889
[24]   Noise reduction for compressive digital one-shot in-line holographic tomography [J].
Zhang, Hua ;
Cao, Liangcai ;
Zhang, Hao ;
Zhang, Wenhui ;
Zong, Song ;
Han, Chao ;
Jin, Guofan .
HOLOGRAPHY, DIFFRACTIVE OPTICS, AND APPLICATIONS VII, 2017, 10022
[25]   Lensless digital holographic microscope using in-line configuration and laser diode illumination [J].
Goering, Lena ;
Finkeldey, Markus ;
Adinda-Ougba, Adamou ;
Gerhardt, Nils C. ;
Hofmann, Martin .
PRACTICAL HOLOGRAPHY XXXI: MATERIALS AND APPLICATIONS, 2017, 10127
[26]   Dual-channel in-line digital holographic double random phase encryption [J].
Das, Bhargab ;
Yelleswarapu, Chandra S. ;
Rao, D. V. G. L. N. .
OPTICS COMMUNICATIONS, 2012, 285 (21-22) :4262-4267
[27]   Size measurement of bubbles in a cavitation tunnel by digital in-line holography [J].
Lebrun, Denis ;
Allano, Daniel ;
Mees, Loic ;
Walle, Francoise ;
Corbin, Frederic ;
Boucheron, Romuald ;
Frechou, Didier .
APPLIED OPTICS, 2011, 50 (34) :H1-H9
[28]   Uncertainty characterization of particle depth measurement using digital in-line holography and the hybrid method [J].
Gao, Jian ;
Guildenbecher, Daniel R. ;
Reu, Phillip L. ;
Chen, Jun .
OPTICS EXPRESS, 2013, 21 (22) :26432-26449
[29]   Complex Wavefront Reconstruction of Digital In-Line Holography with a Spatial Radial Carrier [J].
Yoshikawa, Nobukazu ;
Koseki, Toshiya .
OPTICAL REVIEW, 2014, 21 (03) :325-332
[30]   Holographic in-line imaging setup for measuring the solid content of fluids [J].
Kaikkonen, Ville A. ;
Makynen, Anssi J. .
HOLOGRAPHY: ADVANCES AND MODERN TRENDS III, 2013, 8776