STRONG TRACES FOR AVERAGED SOLUTIONS OF HETEROGENEOUS ULTRA-PARABOLIC TRANSPORT EQUATIONS

被引:13
作者
Aleksic, Jelena [1 ]
Mitrovic, Darko [2 ]
机构
[1] Univ Novi Sad, Dept Math & Informat, Novi Sad 21000, Serbia
[2] Univ Montenegro, Fac Math & Nat Sci, Podgorica 81000, Montenegro
关键词
Ultra-parabolic transport equation; trace theorem; conservation laws; kinetic formulation; RELAXATION; EXISTENCE;
D O I
10.1142/S0219891613500239
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that if traceability conditions are fulfilled then a weak solution h is an element of L-infinity(R+ x R-d x R) to the ultra-parabolic transport equation partial derivative(t)h + div(x)(F(t, x, lambda)h) = Sigma(k)(i,j=1) partial derivative(2)(xixj) (b(ij)(t, x, lambda)h) + partial derivative(lambda)gamma(t, x, lambda), is such that for every rho is an element of C-c(1)(R), the velocity averaged quantity integral(R)h(t, x, lambda) rho(lambda)d lambda admits the strong L-loc(1) (R-d)-limit as t -> 0, i.e. there exist h(0)(x, lambda) is an element of L-loc(1)(R-d x R) and set E subset of R+ of full measure such that for every rho is an element of C-c(1)(R), L-loc(1)(R-d) - lim(t -> 0, t is an element of E)integral(R)h(t, x, lambda)rho(lambda)d lambda = integral(R)h(0)(x, lambda)rho(lambda)d lambda. As a corollary, under the traceability conditions, we prove the existence of strong traces for entropy solutions to ultra-parabolic equations in heterogeneous media.
引用
收藏
页码:659 / 676
页数:18
相关论文
共 22 条
[11]  
LIONS P.-L., 1994, J. Amer. Math. Soc., V7, P169
[12]  
Natalini R, 1996, COMMUN PUR APPL MATH, V49, P795, DOI 10.1002/(SICI)1097-0312(199608)49:8<795::AID-CPA2>3.0.CO
[13]  
2-3
[14]  
Nordbitten J. M., COMMUNICATION
[15]  
Nusselt W, 1910, Z VER DTSCH ING, V54, P1154
[16]   Existence of strong traces for quasi-solutions of multidimensional conservation laws [J].
Panov, E. Yu. .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2007, 4 (04) :729-770
[17]  
Panov E. Yu., 2009, J MATH SCI, V159, P180
[18]   Existence of strong traces for generalized solutions of multidimensional scalar conservation laws [J].
Panov, EY .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2005, 2 (04) :885-908
[19]  
PANOV EY, 1991, THESIS MOSCOW STATE
[20]  
Sazhenkov S. A., 2007, J PRIME RES MATH, V3, P140