STRONG TRACES FOR AVERAGED SOLUTIONS OF HETEROGENEOUS ULTRA-PARABOLIC TRANSPORT EQUATIONS

被引:13
作者
Aleksic, Jelena [1 ]
Mitrovic, Darko [2 ]
机构
[1] Univ Novi Sad, Dept Math & Informat, Novi Sad 21000, Serbia
[2] Univ Montenegro, Fac Math & Nat Sci, Podgorica 81000, Montenegro
关键词
Ultra-parabolic transport equation; trace theorem; conservation laws; kinetic formulation; RELAXATION; EXISTENCE;
D O I
10.1142/S0219891613500239
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that if traceability conditions are fulfilled then a weak solution h is an element of L-infinity(R+ x R-d x R) to the ultra-parabolic transport equation partial derivative(t)h + div(x)(F(t, x, lambda)h) = Sigma(k)(i,j=1) partial derivative(2)(xixj) (b(ij)(t, x, lambda)h) + partial derivative(lambda)gamma(t, x, lambda), is such that for every rho is an element of C-c(1)(R), the velocity averaged quantity integral(R)h(t, x, lambda) rho(lambda)d lambda admits the strong L-loc(1) (R-d)-limit as t -> 0, i.e. there exist h(0)(x, lambda) is an element of L-loc(1)(R-d x R) and set E subset of R+ of full measure such that for every rho is an element of C-c(1)(R), L-loc(1)(R-d) - lim(t -> 0, t is an element of E)integral(R)h(t, x, lambda)rho(lambda)d lambda = integral(R)h(0)(x, lambda)rho(lambda)d lambda. As a corollary, under the traceability conditions, we prove the existence of strong traces for entropy solutions to ultra-parabolic equations in heterogeneous media.
引用
收藏
页码:659 / 676
页数:18
相关论文
共 22 条
[1]   AVERAGED MULTIVALUED SOLUTIONS FOR SCALAR CONSERVATION-LAWS [J].
BRENIER, Y .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1984, 21 (06) :1013-1037
[2]   Quasilinear anisotropic degenerate parabolic equations with time-space dependent diffusion coefficients [J].
Chen, GQ ;
Karlsen, KH .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2005, 4 (02) :241-266
[3]   Well-posedness for non-isotropic degenerate parabolic-hyperbolic equations [J].
Chen, GQ ;
Perthame, B .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2003, 20 (04) :645-668
[4]   Kinetic formulation for a parabolic conservation law. Application to homogenization [J].
Dalibard, Anne-Laure .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2007, 39 (03) :891-915
[5]   CHARACTERIZING BLOWUP USING SIMILARITY VARIABLES [J].
GIGA, Y ;
KOHN, RV .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1987, 36 (01) :1-40
[6]  
Graetz vL, 1885, Ann Phys, Lpz, V261, P337, DOI [10.1002/andp.18852610702, DOI 10.1002/ANDP.18852610702, DOI 10.1002/ANDP.18822540106]
[7]  
Kruzkov S.N., 1970, MAT SB, V81, P228
[8]   Strong traces for solutions to scalar conservation laws with general flux [J].
Kwon, Young-Sam ;
Vasseur, Alexis .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2007, 185 (03) :495-513
[9]  
Lazar M, 2012, DYNAM PART DIFFER EQ, V9, P239
[10]  
Levich V.G., 1959, Physicochemical Hydrodynamics (in Russian)