RBF Neural Network Adaptive Robust Sliding Mode Control Method of Artillery Ammunition Transfer Arm

被引:0
|
作者
Cai, Hangjun [1 ]
Chen, Longmiao [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Mech Engn, Nanjing 210094, Jiangsu, Peoples R China
来源
2019 5TH INTERNATIONAL CONFERENCE ON ADVANCES IN ENERGY RESOURCES AND ENVIRONMENT ENGINEERING (ICAESEE 2019) | 2020年 / 446卷
关键词
D O I
10.1088/1755-1315/446/2/022003
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper presents a robust adaptive sliding mode control strategy using radial basis function (RBF) neural network for a kind of value controlled asymmetric cylinder electrohydraulic servo system of an ammunition transfer arm in the presence of uncertain nonlinearity and parameter uncertainty. On the premise of setting the expected trajectory, using RBF neural networks to approximate unknown parameters, by setting appropriate neural network parameters and adaptive terms, the change trend of position parameter was estimated. The stability of close loop system is verified by the Lyapounov theory. Compared with the simulation results of PID control method and expected trajectory, RBF Neural Net sliding mode control method has smaller system tracking error,faster response and better tracking performance.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Robust RBF Neural Network Control with Adaptive Sliding Mode Compensator for MEMS Gyroscope
    Fei, Juntao
    Yang, Yuzheng
    Wu, Dan
    2013 IEEE/ACIS 12TH INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCE (ICIS), 2013, : 449 - 454
  • [2] Research on Adaptive Sliding Mode Robust Control Algorithm of Manipulator Based on RBF Neural Network
    Tian, Hua
    Liang, Yanbing
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 4625 - 4629
  • [3] Adaptive sliding mode control of dynamic system using RBF neural network
    Juntao Fei
    Hongfei Ding
    Nonlinear Dynamics, 2012, 70 : 1563 - 1573
  • [4] Adaptive sliding mode control using RBF Neural Network for nonlinear system
    Zhang, Ming-Guang
    Chen, Yu-Wu
    Wang, Peng
    Wang, Zhao-Gang
    PROCEEDINGS OF 2008 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2008, : 1860 - 1865
  • [5] Adaptive Sliding mode Control Based on RBF Neural Network Approximation for Quadrotor
    Alqaisi, Walid Kh.
    Brahmi, Brahim
    Ghommam, Jawhar
    Saad, Maarouf
    Nerguizian, Vahe
    2019 IEEE INTERNATIONAL SYMPOSIUM ON ROBOTIC AND SENSORS ENVIRONMENTS (ROSE 2019), 2019, : 77 - 83
  • [6] Adaptive Sliding Mode Control for Dual Missile Using RBF Neural Network
    Kim, Seunghyun
    Cho, Dongsoo
    Kim, H. Jin
    2014 14TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2014), 2014, : 1267 - 1271
  • [7] Adaptive sliding mode control of dynamic system using RBF neural network
    Fei, Juntao
    Ding, Hongfei
    NONLINEAR DYNAMICS, 2012, 70 (02) : 1563 - 1573
  • [8] RBF Neural Network Adaptive Sliding Mode Control of Rotary Stewart Platform
    Tan Van Nguyen
    Ha, Cheolkeun
    INTELLIGENT COMPUTING METHODOLOGIES, ICIC 2018, PT III, 2018, 10956 : 149 - 162
  • [9] Adaptive RBF neural network sliding mode control for a DEAP linear actuator
    Qiu D.
    Chen Y.
    Li Y.
    International Journal of Performability Engineering, 2017, 13 (04) : 400 - 408
  • [10] Robust Adaptive Control of Robots Using Neural Network and Sliding Mode Control
    Nguyen Thai-Huu
    Minh Phan-Xuan
    Son Hoang-Minh
    Dan Nguyen-Cong
    Quyet Ho-Gia
    2013 INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND INFORMATION SCIENCES (ICCAIS), 2013,