Bounds for Minkowski Billiard Trajectories in Convex Bodies

被引:44
作者
Artstein-Avidan, Shiri [1 ]
Ostrover, Yaron [1 ]
机构
[1] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
关键词
SYMPLECTIC TOPOLOGY; INEQUALITIES; GEOMETRY;
D O I
10.1093/imrn/rns216
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we use the Ekeland-Hofer-Zehnder symplectic capacity to provide several bounds and inequalities for the length of the shortest periodic billiard trajectory in a smooth convex body in R-n. Our results hold both for classical billiards, as well as for the more general case of Minkowski billiards.
引用
收藏
页码:165 / 193
页数:29
相关论文
共 44 条
[1]   Periodic Bounce Orbits of Prescribed Energy [J].
Albers, Peter ;
Mazzucchelli, Marco .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2011, 2011 (14) :3289-3314
[2]  
[Anonymous], 2005, Courant Lecture Notes in Mathematics
[3]  
[Anonymous], 1997, PRINCETON LANDMARKS
[4]  
Artstein-Avidan S, 2008, COMMENT MATH HELV, V83, P359
[5]   A Brunn-Minkowski Inequality for Symplectic Capacities of Convex Domains [J].
Artstein-Avidan, Shiri ;
Ostrover, Yaron .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2008, 2008
[6]  
BENCI V, 1989, ANN I H POINCARE-AN, V6, P73
[7]   ON EXTENSIONS OF BRUNN-MINKOWSKI AND PREKOPA-LEINDLER THEOREMS, INCLUDING INEQUALITIES FOR LOG CONCAVE FUNCTIONS, AND WITH AN APPLICATION TO DIFFUSION EQUATION [J].
BRASCAMP, HJ ;
LIEB, EH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1976, 22 (04) :366-389
[8]  
Cieliebak K., 2007, MATH SCI RES I PUBL, V54, P1
[9]   NEW APPROACH TO LAGRANGE MULTIPLIERS. [J].
Clarke, Frank H. .
Mathematics of Operations Research, 1976, 1 (02) :165-174
[10]  
Clarke F.H., 1989, Methods of dynamic and nonsmooth optimization, V57