Connectivity shapes

被引:33
作者
Isenburg, M [1 ]
Gumhold, S [1 ]
Gotsman, C [1 ]
机构
[1] Univ N Carolina, Chapel Hill, NC 27515 USA
来源
VISUALIZATION 2001, PROCEEDINGS | 2001年
关键词
natural embedding; mesh connectivity; implicit geometry; polygon meshes; shape compression;
D O I
10.1109/VISUAL.2001.964504
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We describe a method to visualize the connectivity graph of a mesh using a natural embedding in 3D space. This uses a 3D shape representation that is based solely on mesh connectivity - the connectivity shape. Given a connectivity, we define its natural geometry as a smooth embedding in space with uniform edge lengths and describe efficient techniques to compute it. Our main contribution is to demonstrate that a surprising amount of geometric information is implicit in the connectivity. We also show how to generate connectivity shapes that approximate given 3D shapes. Potential applications of connectivity shapes to modeling and mesh coding are described.
引用
收藏
页码:135 / 142
页数:8
相关论文
共 22 条
  • [1] Amenta N., 1998, Computer Graphics. Proceedings. SIGGRAPH 98 Conference Proceedings, P415, DOI 10.1145/280814.280947
  • [2] [Anonymous], METIS SOFTWARE PACKA
  • [3] BERN M, 1995, COMPUTING EUCLIDEAN, P71
  • [4] Connelly R., 1977, I HAUTES ETUDES SCI, V47, P333, DOI 10.1007/BF02684342
  • [5] Cromwell P., 1997, Polyhedra
  • [6] Parametrization and smooth approximation of surface triangulations
    Floater, MS
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 1997, 14 (03) : 231 - 250
  • [7] Frey PJ, 2000, P 9 INT MESH ROUNDT, P123
  • [8] GAJER P, 2000, INT S GRAPH DRAW, P211
  • [9] GUMHOLD S, 1998, SIGGRAPH 98 C P, P133, DOI DOI 10.1145/280814.280836
  • [10] R-DIMENSIONAL QUADRATIC PLACEMENT ALGORITHM
    HALL, KM
    [J]. MANAGEMENT SCIENCE SERIES A-THEORY, 1970, 17 (03): : 219 - 229