Machine Learning Models Predicting Cardiovascular and Renal Outcomes and Mortality in Patients with Hyperkalemia

被引:9
作者
Kanda, Eiichiro [1 ]
Okami, Suguru [2 ]
Kohsaka, Shun [3 ]
Okada, Masafumi [4 ]
Ma, Xiaojun [4 ]
Kimura, Takeshi [5 ]
Shirakawa, Koichi [2 ]
Yajima, Toshitaka [2 ]
机构
[1] Kawasaki Med Sch, Med Sci, 577 Matsushima, Kurashiki, Okayama 7010192, Japan
[2] AstraZeneca KK, Cardiovasc Renal & Metab, Med Affairs, Kita Ku, Tower B Grand Front Osaka,3-1 Ofukacho, Osaka 5300011, Japan
[3] Keio Univ, Dept Cardiol, Sch Med, Shinjyuku Ku, 35 Shinanomachi, Tokyo 1608582, Japan
[4] IQVIA Solut Japan KK, Minato Ku, Keikyu Dai Ichi Bldg,4-10-18 Takanawa, Tokyo 1080074, Japan
[5] Real World Data Co Ltd, Nakagyo Ku, 76 Nakanocho, Kyoto 6040086, Japan
关键词
artificial intelligence; chronic kidney disease; congestive heart failure; hyperkalemia; CHRONIC KIDNEY-DISEASE; SERUM POTASSIUM; ASSOCIATION; MANAGEMENT; RISK; CKD;
D O I
10.3390/nu14214614
中图分类号
R15 [营养卫生、食品卫生]; TS201 [基础科学];
学科分类号
100403 ;
摘要
Hyperkalemia is associated with increased risks of mortality and adverse clinical outcomes. The treatment of hyperkalemia often leads to the discontinuation or restriction of beneficial but potassium-increasing therapy such as renin-angiotensin-aldosterone inhibitors (RAASi) and high-potassium diet including fruits and vegetables. To date, limited evidence is available for personalized risk evaluation in this heterogeneous and multifactorial pathophysiological condition. We developed risk prediction models using extreme gradient boosting (XGB), multiple logistic regression (LR), and deep neural network. Models were derived from a retrospective cohort of hyperkalemic patients with either heart failure or chronic kidney disease stage >= 3a from a Japanese nationwide database (1 April 2008-30 September 2018). Studied outcomes included all-cause death, renal replacement therapy introduction (RRT), hospitalization for heart failure (HHF), and cardiovascular events within three years after hyperkalemic episodes. The best performing model was further validated using an external cohort. A total of 24,949 adult hyperkalemic patients were selected for model derivation and internal validation. A total of 1452 deaths (16.6%), 887 RRT (10.1%), 1,345 HHF (15.4%), and 621 cardiovascular events (7.1%) were observed. XGB outperformed other models. The area under receiver operator characteristic curves (AUROCs) of XGB vs. LR (95% CIs) for death, RRT, HHF, and cardiovascular events were 0.823 (0.805-0.841) vs. 0.809 (0.791-0.828), 0.957 (0.947-0.967) vs. 0.947 (0.936-0.959), 0.863 (0.846-0.880) vs. 0.838 (0.820-0.856), and 0.809 (0.784-0.834) vs. 0.798 (0.772-0.823), respectively. In the external dataset including 86,279 patients, AUROCs (95% CIs) for XGB were: death, 0.747 (0.742-0.753); RRT, 0.888 (0.882-0.894); HHF, 0.673 (0.666-0.679); and cardiovascular events, 0.585 (0.578-0.591). Kaplan-Meier curves of the high-risk predicted group showed a statistically significant difference from that of the low-risk predicted groups for all outcomes (p < 0.005; log-rank test). These findings suggest possible use of machine learning models for real-world risk assessment as a guide for observation and/or treatment decision making that may potentially lead to improved outcomes in hyperkalemic patients while retaining the benefit of life-saving therapies.
引用
收藏
页数:17
相关论文
共 38 条
[1]   Machine Learning to Identify Dialysis Patients at High Death Risk [J].
Akbilgic, Oguz ;
Obi, Yoshitsugu ;
Potukuchi, Praveen K. ;
Karabayir, Ibrahim ;
Nguyen, Danh, V ;
Soohoo, Melissa ;
Streja, Elani ;
Molnar, Miklos Z. ;
Rhee, Connie M. ;
Kalantar-Zadeh, Kamyar ;
Kovesdy, Csaba P. .
KIDNEY INTERNATIONAL REPORTS, 2019, 4 (09) :1219-1229
[2]   Machine Learning Prediction of Mortality and Hospitalization in Heart Failure With Preserved Ejection Fraction [J].
Angraal, Suveen ;
Mortazavi, Bobak J. ;
Gupta, Aakriti ;
Khera, Rohan ;
Ahmad, Tariq ;
Desai, Nihar R. ;
Jacoby, Daniel L. ;
Masoudi, Frederick A. ;
Spertus, John A. ;
Krumholz, Harlan M. .
JACC-HEART FAILURE, 2020, 8 (01) :12-21
[3]   Urinary Potassium Excretion and Renal and Cardiovascular Complications in Patients with Type 2 Diabetes and Normal Renal Function [J].
Araki, Shin-ichi ;
Haneda, Masakazu ;
Koya, Daisuke ;
Kondo, Keiko ;
Tanaka, Sachiko ;
Arima, Hisatomi ;
Kume, Shinji ;
Nakazawa, Jun ;
Chin-Kanasaki, Masami ;
Ugi, Satoshi ;
Kawai, Hiromichi ;
Araki, Hisazumi ;
Uzu, Takashi ;
Maegawa, Hiroshi .
CLINICAL JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2015, 10 (12) :2152-2158
[4]  
Chaitman Martin, 2016, P T, V41, P43
[5]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794
[6]   Association of Serum Potassium with All-Cause Mortality in Patients with and without Heart Failure, Chronic Kidney Disease, and/or Diabetes [J].
Collins, Allan J. ;
Pitt, Bertram ;
Reaven, Nancy ;
Funk, Susan ;
McGaughey, Karen ;
Wilson, Daniel ;
Bushinsky, David A. .
AMERICAN JOURNAL OF NEPHROLOGY, 2017, 46 (03) :213-221
[7]   Combined effect of renal function and serum potassium level in sudden cardiac death in aging hypertensive subjects [J].
Fauvel, Jean-Pierre ;
Gueyffier, Francois ;
Thijs, Lutgarde ;
Ducher, Michel .
HYPERTENSION RESEARCH, 2018, 41 (06) :469-474
[8]   Improved risk stratification of patients with atrial fibrillation: an integrated GARFIELD-AF tool for the prediction of mortality, stroke and bleed in patients with and without anticoagulation [J].
Fox, Keith A. A. ;
Lucas, Joseph E. ;
Pieper, Karen S. ;
Bassand, Jean-Pierre ;
Camm, A. John ;
Fitzmaurice, David A. ;
Goldhaber, Samuel Z. ;
Goto, Shinya ;
Haas, Sylvia ;
Hacke, Werner ;
Kayani, Gloria ;
Oto, Ali ;
Mantovani, Lorenzo G. ;
Misselwitz, Frank ;
Piccini, Jonathan P. ;
Turpie, Alexander G. G. ;
Verheugt, Freek W. A. ;
Kakkar, Ajay K. ;
Lucas Luciardi, Hector ;
Gibbs, Harry ;
Brodmann, Marianne ;
Cools, Frank ;
Pereira Barretto, Antonio Carlos ;
Connolly, Stuart J. ;
Spyropoulos, Alex ;
Eikelboom, John ;
Corbalan, Ramon ;
Hu, Dayi ;
Jansky, Petr ;
Nielsen, Jorn Dalsgaard ;
Ragy, Hany ;
Raatikainen, Pekka ;
Le Heuzey, Jean-Yves ;
Darius, Harald ;
Keltai, Matyas ;
Kakkar, Sanjay ;
Sawhney, Jitendra Pal Singh ;
Agnelli, Giancarlo ;
Ambrosio, Giuseppe ;
Koretsune, Yukihiro ;
Sanchez Diaz, Carlos Jerjes ;
Ten Cate, Hugo ;
Atar, Dan ;
Stepinska, Janina ;
Panchenko, Elizaveta ;
Lim, Toon Wei ;
Jacobson, Barry ;
Oh, Seil ;
Vinolas, Xavier ;
Rosenqvist, Marten .
BMJ OPEN, 2017, 7 (12)
[9]   Stopping Renin-Angiotensin System Inhibitors in Patients with Advanced CKD and Risk of Adverse Outcomes: A Nationwide Study [J].
Fu, Edouard L. ;
Evans, Marie ;
Clase, Catherine M. ;
Tomlinson, Laurie A. ;
van Diepen, Merel ;
Dekker, Friedo W. ;
Carrero, Juan J. .
JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2021, 32 (02) :424-435
[10]   An Integrated View of Potassium Homeostasis [J].
Gumz, Michelle L. ;
Rabinowitz, Lawrence ;
Wingo, Charles S. .
NEW ENGLAND JOURNAL OF MEDICINE, 2015, 373 (01) :60-72