Expanding the Dimensions of a Small, Two-Dimensional Diffraction Detector

被引:1
作者
Chen, Xi [1 ]
Hauwiller, Matthew R. [1 ]
Kumar, Abinash [1 ]
Penn, Aubrey N. [2 ]
LeBeau, James M. [1 ]
机构
[1] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[2] North Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27606 USA
基金
美国国家科学基金会;
关键词
diffuse scattering; direct electron cameras; electron diffraction; high dynamic range; CRYO-EM; ELECTRON; ORIENTATION; SCATTERING; RESOLUTION; PATTERNS;
D O I
10.1017/S1431927620024277
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We report an approach to expand the effective number of pixels available to small, two-dimensional electron detectors. To do so, we acquire subsections of a diffraction pattern that are then accurately stitched together in post-processing. Using an electron microscopy pixel array detector (EMPAD) that has only 128 x 128 pixels, we show that the field of view can be expanded while achieving high reciprocal-space sampling. Further, we highlight the need to properly account for the detector position (rotation) and the non-orthonormal diffraction shift axes to achieve an accurate reconstruction. Applying the method, we provide examples of spot and convergent beam diffraction patterns acquired with a pixelated detector.
引用
收藏
页码:938 / 943
页数:6
相关论文
共 33 条
  • [1] INELASTIC-NEUTRON-SCATTERING STUDY OF ACOUSTIC PHONONS IN NB3SN
    AXE, JD
    SHIRANE, G
    [J]. PHYSICAL REVIEW B, 1973, 8 (05): : 1965 - 1977
  • [2] Direct electron detection yields cryo-EM reconstructions at resolutions beyond 3/4 Nyquist frequency
    Bammes, Benjamin E.
    Rochat, Ryan H.
    Jakana, Joanita
    Chen, Dong-Hua
    Chiu, Wah
    [J]. JOURNAL OF STRUCTURAL BIOLOGY, 2012, 177 (03) : 589 - 601
  • [3] Practical aspects of diffractive imaging using an atomic-scale coherent electron probe
    Chen, Z.
    Weyland, M.
    Ercius, P.
    Ciston, J.
    Zheng, C.
    Fuhrer, M. S.
    D'Alfonso, A. J.
    Allen, L. J.
    Findlay, S. D.
    [J]. ULTRAMICROSCOPY, 2016, 169 : 107 - 121
  • [4] High Dynamic Range Electron Imaging: The New Standard
    Evans, Keith
    Beanland, Richard
    [J]. MICROSCOPY AND MICROANALYSIS, 2014, 20 (05) : 1601 - 1604
  • [5] Digital imaging in transmission electron microscopy
    Fan, GY
    Ellisman, MH
    [J]. JOURNAL OF MICROSCOPY, 2000, 200 (01) : 1 - 13
  • [6] Polycrystal orientation maps from TEM
    Fundenberger, JJ
    Morawiec, A
    Bouzy, E
    Lecomte, JS
    [J]. ULTRAMICROSCOPY, 2003, 96 (02) : 127 - 137
  • [7] Herzik MA, 2017, NAT METHODS, V14, P1075, DOI [10.1038/nmeth.4461, 10.1038/NMETH.4461]
  • [8] Determination of phonon dispersions from X-ray transmission scattering: The example of silicon
    Holt, M
    Wu, Z
    Hong, HW
    Zschack, P
    Jemian, P
    Tischler, J
    Chen, H
    Chiang, TC
    [J]. PHYSICAL REVIEW LETTERS, 1999, 83 (16) : 3317 - 3319
  • [9] Signal-to-noise and radiation exposure considerations in conventional and diffraction x-ray microscopy
    Huang, Xiaojing
    Miao, Huijie
    Steinbrener, Jan
    Nelson, Johanna
    Shapiro, David
    Stewart, Andrew
    Turner, Joshua
    Jacobsen, Chris
    [J]. OPTICS EXPRESS, 2009, 17 (16): : 13541 - 13553
  • [10] Electron ptychography of 2D materials to deep sub-angstrom resolution
    Jiang, Yi
    Chen, Zhen
    Hang, Yimo
    Deb, Pratiti
    Gao, Hui
    Xie, Saien
    Purohit, Prafull
    Tate, Mark W.
    Park, Jiwoong
    Gruner, Sol M.
    Elser, Veit
    Muller, David A.
    [J]. NATURE, 2018, 559 (7714) : 343 - +