Electromechanical performance of an ionic polymer-metal composite actuator with hierarchical surface texture

被引:20
作者
He, Qingsong [1 ,2 ]
Yu, Min [1 ]
Zhang, Xiaoqing [1 ]
Dai, Zhendong [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Inst Bioinspired Struct & Surface Engn, Nanjing 210016, Jiangsu, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Coll Mech & Elect Engn, Nanjing 210016, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
IPMC ACTUATORS; MODEL; MORPHOLOGY; MEMBRANES;
D O I
10.1088/0964-1726/22/5/055001
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Two stainless steel templates were fabricated using electric-spark machining, and a hierarchical surface texture of ionic polymer was produced using both polishing and replication methods, which produced microscale and nanoscale groove-shaped microstructures at the surface of the polymer. The surface morphology of the Nafion membrane and metal electrode were observed using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). SEM and EDS line-scan analysis indicated that the interfacial surface area was considerably increased and an excellent metal electrode was obtained with the production of a hierarchical surface texture. The displacement, blocking force, and electric current were measured using home-built apparatus. The results revealed that the combined polishing and replication method significantly improved the electromechanical performance of the ionic polymer-metal composite (IPMC). Compared with sandblasted Nafion-based IPMC, the blocking force, displacement, and electric current of the replicated Nafion-based IPMC were 4.39, 2.35, and 1.87 times higher, respectively. The IPMC fabricated in this work exhibited a competitive blocking force compared with recently reported actuators.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Effects of Anisotropic Surface Texture on the Performance of Ionic Polymer-Metal Composite (IPMC)
    He, Qingsong
    Yu, Min
    Ding, Haitao
    Guo, Dongjie
    Dai, Zhendong
    ELECTROACTIVE POLYMER ACTUATORS AND DEVICES (EAPAD) 2010, 2010, 7642
  • [2] Multiphysics of ionic polymer-metal composite actuator
    Zhu, Zicai
    Asaka, Kinji
    Chang, Longfei
    Takagi, Kentaro
    Chen, Hualing
    JOURNAL OF APPLIED PHYSICS, 2013, 114 (08)
  • [3] Verification of Beam Models for Ionic Polymer-Metal Composite Actuator
    Ji, Ai-hong
    Park, Hoon Cheol
    Nguyen, Quoc Viet
    Lee, Jang Woo
    Yoo, Young Tai
    JOURNAL OF BIONIC ENGINEERING, 2009, 6 (03) : 232 - 238
  • [4] Verification of beam models for ionic polymer-metal composite actuator
    Ai-hong Ji
    Hoon Cheol Park
    Quoc Viet Nguyen
    Jang Woo Lee
    Young Tai Yoo
    Journal of Bionic Engineering, 2009, 6 : 232 - 238
  • [5] Verification of Beam Models for Ionic Polymer-Metal Composite Actuator
    Hoon Cheol Park
    Quoc Viet Nguyen
    Jang Woo Lee
    Young Tai Yoo
    Journal of Bionic Engineering, 2009, 6 (03) : 232 - 238
  • [6] ELECTROMECHANICAL COUPLING IN IONIC POLYMER-METAL COMPOSITES
    Davidson, Jacob D.
    Goulbourne, N. C.
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION (IMECE 2010), VOL 9, 2012, : 723 - 735
  • [7] Analysis and experiment on a self-sensing ionic polymer-metal composite actuator
    Nam, Doan Ngoc Chi
    Ahn, Kyoung Kwan
    SMART MATERIALS AND STRUCTURES, 2014, 23 (07)
  • [8] Ionic polymer-metal composite applications
    ul Haq, Mazhar
    Gang, Zhao
    EMERGING MATERIALS RESEARCH, 2016, 5 (01) : 153 - 164
  • [9] An Antifatigue Liquid Metal Composite Electrode Ionic Polymer-Metal Composite Artificial Muscle with Excellent Electromechanical Properties
    He, Zhihao
    Jiao, Shasha
    Wang, Zhengping
    Wang, Yifan
    Yang, Mengyu
    Zhang, Ye
    Liu, Yiwei
    Wu, Yuanzhao
    Shang, Jie
    Chen, Qingming
    Li, Run-Wei
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (12) : 14630 - 14639
  • [10] The enhanced actuation response of an ionic polymer-metal composite actuator based on sulfonated polyphenylsulfone
    Tang, Yongjun
    Chen, Chao
    Ye, Yun Sheng
    Xue, Zhigang
    Zhou, Xingping
    Xie, Xiaolin
    POLYMER CHEMISTRY, 2014, 5 (20) : 6097 - 6107