Noise source identification with the lattice Boltzmann method

被引:16
作者
Vergnault, Etienne [1 ]
Malaspinas, Orestis [1 ,2 ]
Sagaut, Pierre [1 ]
机构
[1] Univ Paris 06, Inst Jean Le Rond dAlembert, UMR 7190, F-75005 Paris, France
[2] Univ Geneva, Dept Comp Sci, CH-1227 Carouge, Switzerland
基金
瑞士国家科学基金会;
关键词
SENSITIVITY-ANALYSIS; HYDRODYNAMICS; SCHEMES; FLOW;
D O I
10.1121/1.4776181
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper the sound source identification problem is addressed with the use of the lattice Boltzmann method. To this aim, a time-reversed problem coupled to a complex differentiation method is used. In order to circumvent the inherent instability of the time-reversed lattice Boltzmann scheme, a method based on a split of the lattice Boltzmann equation into a mean and a perturbation component is used. Lattice Boltzmann method formulation around an arbitrary base flow is recalled and specific applications to acoustics are presented. The implementation of the noise source detection method for two-dimensional weakly compressible (low Mach number) flows is discussed, and the applicability of the method is demonstrated. (C) 2013 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4776181]
引用
收藏
页码:1293 / 1305
页数:13
相关论文
共 30 条
  • [1] Lattice-Boltzmann Method for Complex Flows
    Aidun, Cyrus K.
    Clausen, Jonathan R.
    [J]. ANNUAL REVIEW OF FLUID MECHANICS, 2010, 42 : 439 - 472
  • [2] Massively parallel lattice-Boltzmann simulation of turbulent channel flow
    Amati, G
    Succi, S
    Piva, R
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1997, 8 (04): : 869 - 877
  • [3] [Anonymous], THESIS NORWEGIAN U S
  • [4] THE LATTICE BOLTZMANN-EQUATION - THEORY AND APPLICATIONS
    BENZI, R
    SUCCI, S
    VERGASSOLA, M
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1992, 222 (03): : 145 - 197
  • [5] MUPHY: A parallel MUlti PHYsics/scale code for high performance bio-fluidic simulations
    Bernaschi, M.
    Melchionna, S.
    Succi, S.
    Fyta, M.
    Kaxiras, E.
    Sircar, J. K.
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (09) : 1495 - 1502
  • [6] A MODEL FOR COLLISION PROCESSES IN GASES .1. SMALL AMPLITUDE PROCESSES IN CHARGED AND NEUTRAL ONE-COMPONENT SYSTEMS
    BHATNAGAR, PL
    GROSS, EP
    KROOK, M
    [J]. PHYSICAL REVIEW, 1954, 94 (03): : 511 - 525
  • [7] An analysis of the correlations between the turbulent flow and the sound pressure fields of subsonic jets
    Bogey, C.
    Bailly, C.
    [J]. JOURNAL OF FLUID MECHANICS, 2007, 583 : 71 - 97
  • [8] A Complex Automata approach for in-stent restenosis: Two-dimensional multiscale modelling and simulations
    Caiazzo, Alfonso
    Evans, David
    Falcone, Jean-Luc
    Hegewald, Jan
    Lorenz, Eric
    Stahl, Bernd
    Wang, Dinan
    Bernsdorf, Joerg
    Chopard, Bastien
    Gunn, Julian
    Hose, Rod
    Krafczyk, Manfred
    Lawford, Pat
    Smallwood, Rod
    Walker, Dawn
    Hoekstra, Alfons
    [J]. JOURNAL OF COMPUTATIONAL SCIENCE, 2011, 2 (01) : 9 - 17
  • [9] Chapman S., 1991, MATH THEORY NONUNIFO, P1
  • [10] Chopard B., 2002, Adv. Complex Systems, V5, P103, DOI [10.1142/S0219525902000602, DOI 10.1142/S0219525902000602]