Near-Lossless Multichannel EEG Compression Based on Matrix and Tensor Decompositions

被引:43
作者
Dauwels, Justin [1 ]
Srinivasan, K. [1 ]
Reddy, M. Ramasubba [2 ]
Cichocki, Andrzej [3 ,4 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
[2] Indian Inst Technol, Dept Appl Mech, Biomed Engn Grp, Madras 600036, Tamil Nadu, India
[3] RIKEN, Lab Adv Brain Signal Proc, BSI, Wako, Saitama 3510198, Japan
[4] Polish Acad Sci, Syst Res Inst, PL-00716 Warsaw, Poland
关键词
Arithmetic coding; compression; electroencephalogram (EEG); multichannel EEG; parallel factor decomposition (PARAFAC); singular value decomposition (SVD); PERFORMANCE; ACQUISITION; SCHEME;
D O I
10.1109/TITB.2012.2230012
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A novel near-lossless compression algorithm for multichannel electroencephalogram (MC-EEG) is proposed based on matrix/tensor decomposition models. MC-EEG is represented in suitable multiway (multidimensional) forms to efficiently exploit temporal and spatial correlations simultaneously. Several matrix/tensor decomposition models are analyzed in view of efficient decorrelation of the multiway forms of MC-EEG. A compression algorithm is built based on the principle of "lossy plus residual coding," consisting of a matrix/tensor decomposition-based coder in the lossy layer followed by arithmetic coding in the residual layer. This approach guarantees a specifiable maximum absolute error between original and reconstructed signals. The compression algorithm is applied to three different scalp EEG datasets and an intracranial EEG dataset, each with different sampling rate and resolution. The proposed algorithm achieves attractive compression ratios compared to compressing individual channels separately. For similar compression ratios, the proposed algorithm achieves nearly fivefold lower average error compared to a similar wavelet-based volumetric MC-EEG compression algorithm.
引用
收藏
页码:708 / 714
页数:7
相关论文
共 23 条
  • [11] PhysioBank, PhysioToolkit, and PhysioNet - Components of a new research resource for complex physiologic signals
    Goldberger, AL
    Amaral, LAN
    Glass, L
    Hausdorff, JM
    Ivanov, PC
    Mark, RG
    Mietus, JE
    Moody, GB
    Peng, CK
    Stanley, HE
    [J]. CIRCULATION, 2000, 101 (23) : E215 - E220
  • [12] Gopikrishna D, 2002, LECT NOTES COMPUT SC, V2552, P443
  • [13] Tensor Decompositions and Applications
    Kolda, Tamara G.
    Bader, Brett W.
    [J]. SIAM REVIEW, 2009, 51 (03) : 455 - 500
  • [14] Liu Q, 2002, 2002 6TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS, VOLS I AND II, P1516, DOI 10.1109/ICOSP.2002.1180083
  • [15] Mahoney MW, 2009, P NATL ACAD SCI USA, V106, P697, DOI [10.1073/pnas.0803205106, 10.1073/pnas.0803205105]
  • [16] Memon N, 1999, IEEE Trans Inf Technol Biomed, V3, P231, DOI 10.1109/4233.788586
  • [17] Said A., 2004, HPL2004145
  • [18] Multichannel EEG Compression: Wavelet-Based Image and Volumetric Coding Approach
    Srinivasan, K.
    Dauwels, Justin
    Reddy, M. Ramasubba
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2013, 17 (01) : 113 - 120
  • [19] A two-dimensional approach for lossless EEG compression
    Srinivasan, K.
    Dauwels, Justin
    Reddy, M. Ramasubba
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2011, 6 (04) : 387 - 394
  • [20] Efficient preprocessing technique for real-time lossless EEG compression
    Srinivasan, K.
    Reddy, M. Ramasubba
    [J]. ELECTRONICS LETTERS, 2010, 46 (01) : 26 - U43