Torsion in Milnor fiber homology

被引:16
|
作者
Cohen, Daniel C. [1 ]
Denham, Graham
Suciu, Alexander I.
机构
[1] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
来源
ALGEBRAIC AND GEOMETRIC TOPOLOGY | 2003年 / 3卷 / 01期
基金
加拿大自然科学与工程研究理事会;
关键词
Milnor fibration; characteristic variety; arrangement;
D O I
10.2140/agt.2003.3.511
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a recent paper, Dimca and Nemethi pose the problem of finding a homogeneous polynomial f such that the homology of the complement of the hypersurface defined by f is torsion-free, but the homology of the Milnor fiber of f has torsion. We prove that this is indeed possible, and show by construction that, for each prime p, there is a polynomial with p-torsion in the homology of the Milnor fiber. The techniques make use of properties of characteristic varieties of hyperplane arrangements.
引用
收藏
页码:511 / 535
页数:25
相关论文
共 50 条
  • [31] ON TORSION IN MILNOR K-GROUPS FOR A LOCAL FIELD
    SIVITSKII, IY
    MATHEMATICS OF THE USSR-SBORNIK, 1985, 126 (3-4): : 561 - 569
  • [32] Erratum to: On the Homology of Completion and Torsion
    Marco Porta
    Liran Shaul
    Amnon Yekutieli
    Algebras and Representation Theory, 2015, 18 : 1401 - 1405
  • [33] Torsion in the magnitude homology of graphs
    Radmila Sazdanovic
    Victor Summers
    Journal of Homotopy and Related Structures, 2021, 16 : 275 - 296
  • [34] Search for Torsion in Khovanov Homology
    Mukherjee, Sujoy
    Przytycki, Jozef H.
    Silvero, Marithania
    Wang, Xiao
    Yang, Seung Yeop
    EXPERIMENTAL MATHEMATICS, 2018, 27 (04) : 488 - 497
  • [35] Torsion in the magnitude homology of graphs
    Sazdanovic, Radmila
    Summers, Victor
    JOURNAL OF HOMOTOPY AND RELATED STRUCTURES, 2021, 16 (02) : 275 - 296
  • [36] TORSION IN LOOP SPACE HOMOLOGY
    FELIX, Y
    HALPERIN, S
    THOMAS, JC
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1992, 432 : 77 - 92
  • [37] A computational approach to Milnor fiber cohomology
    Dimca, Alexandru
    Sticlaru, Gabriel
    FORUM MATHEMATICUM, 2017, 29 (04) : 831 - 846
  • [38] Khovanov homology: torsion and thickness
    Asaeda, MM
    Przytycki, JH
    Advances in Topological Quantum Field Theory, 2004, 179 : 135 - 166
  • [39] Torsion homology and cellular approximation
    Flores, Ramon
    Muro, Fernando
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2019, 19 (01): : 457 - 476
  • [40] TORSION IN LOOP SPACE HOMOLOGY
    AVRAMOV, LL
    TOPOLOGY, 1986, 25 (02) : 155 - 157