Torsion in Milnor fiber homology

被引:16
|
作者
Cohen, Daniel C. [1 ]
Denham, Graham
Suciu, Alexander I.
机构
[1] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
来源
ALGEBRAIC AND GEOMETRIC TOPOLOGY | 2003年 / 3卷 / 01期
基金
加拿大自然科学与工程研究理事会;
关键词
Milnor fibration; characteristic variety; arrangement;
D O I
10.2140/agt.2003.3.511
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a recent paper, Dimca and Nemethi pose the problem of finding a homogeneous polynomial f such that the homology of the complement of the hypersurface defined by f is torsion-free, but the homology of the Milnor fiber of f has torsion. We prove that this is indeed possible, and show by construction that, for each prime p, there is a polynomial with p-torsion in the homology of the Milnor fiber. The techniques make use of properties of characteristic varieties of hyperplane arrangements.
引用
收藏
页码:511 / 535
页数:25
相关论文
共 50 条
  • [21] Torsion in graph homology
    Helme-Guizon, Laure
    Przytycki, Jozef H.
    Rong, Yongwu
    FUNDAMENTA MATHEMATICAE, 2006, 190 : 139 - 177
  • [22] On the Homology of Completion and Torsion
    Porta, Marco
    Shaul, Liran
    Yekutieli, Amnon
    ALGEBRAS AND REPRESENTATION THEORY, 2014, 17 (01) : 31 - 67
  • [23] A motivic Milnor fiber at infinity
    Raibaut, Michel
    COMPTES RENDUS MATHEMATIQUE, 2010, 348 (7-8) : 419 - 422
  • [24] Torsion of Khovanov homology
    Shumakovitch, Alexander N.
    FUNDAMENTA MATHEMATICAE, 2014, 225 : 343 - 364
  • [25] THE MILNOR FIBER OF A GENERIC ARRANGEMENT
    ORLIK, P
    RANDELL, R
    ARKIV FOR MATEMATIK, 1993, 31 (01): : 71 - 81
  • [26] WALLS IN MILNOR FIBER COMPLEXES
    Miller, Alexander R.
    DOCUMENTA MATHEMATICA, 2018, 23 : 1247 - 1261
  • [27] Motivic integration and Milnor fiber
    Fichou, Goulwen
    Yin, Yimu
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2022, 24 (05) : 1617 - 1678
  • [28] Milnor-Thurston homology groups of the Warsaw Circle
    Przewocki, Janusz
    TOPOLOGY AND ITS APPLICATIONS, 2013, 160 (13) : 1732 - 1741
  • [29] The Orlik-Solomon complex and Milnor fibre homology
    Denham, G
    TOPOLOGY AND ITS APPLICATIONS, 2002, 118 (1-2) : 45 - 63
  • [30] A torsion-free Milnor-Moore theorem
    Scott, JA
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2003, 67 : 805 - 816