Optimal algebraic integer implementation with application to complex frequency sampling filters

被引:7
|
作者
Meyer-Bäse, U
Taylor, F
机构
[1] Florida State Univ, Dept Elect & Comp Engn, Tallahassee, FL 32310 USA
[2] Univ Florida, High Speed Digital Architecture Lab, Gainesville, FL 32611 USA
关键词
algebraic integers; cyclotomic polynomials; frequency sampling filters; residue number system;
D O I
10.1109/82.982368
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Algebraic integers have been proven beneficial to discrete Fourier transform, discrete cosine transform, and nonrecursive finite-impulse response filter designs since algebraic integers can be dense in C, resulting in short-word-width, high-speed designs. This brief uses another property of algebraic integers; namely, algebraic integers can produce exact pole zero cancellation pairs that are used in recursive complex finite-impulse response, frequency sampling filter designs.
引用
收藏
页码:1078 / 1082
页数:5
相关论文
共 50 条
  • [41] A CLASS OF FILTERS WITH OPTIMAL RESPONSE TO A STEP OF FREQUENCY
    THIRAN, JP
    ARCHIV DER ELEKTRISCHEN UND UBERTRAGUNG, 1966, 20 (07): : 388 - &
  • [42] Optimal Grid Drawings of Complete Multipartite Graphs and an Integer Variant of the Algebraic Connectivity
    Fabila-Monroy, Ruy
    Hidalgo-Toscano, Carlos
    Huemer, Clemens
    Lara, Dolores
    Mitsche, Dieter
    GRAPH DRAWING AND NETWORK VISUALIZATION, GD 2018, 2018, 11282 : 593 - 605
  • [43] Time-frequency projection filters: Online implementation, subspace tracking, and application to interference excision
    Matz, G
    Hlawatsch, F
    2002 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-IV, PROCEEDINGS, 2002, : 1213 - 1216
  • [44] Design and Implementation of Non-Integer Band Pass Filters for EEG Processing
    Baranowski, Jerzy
    Piatek, Pawel
    Niemczyk, Kamelia
    2016 39TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2016, : 625 - 629
  • [45] Recursive implementation of statistically-optimal null filters
    Agarwal, R
    Plotkin, EI
    Swamy, MNS
    ISCAS 96: 1996 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS - CIRCUITS AND SYSTEMS CONNECTING THE WORLD, VOL 2, 1996, : 245 - 248
  • [46] Optimal fixed-point implementation of digital filters
    Roozbehani, Mardavij
    Megretski, Alexandre
    Feron, Eric
    2007 AMERICAN CONTROL CONFERENCE, VOLS 1-13, 2007, : 5963 - +
  • [47] Algebraic constructions of optimal frequency-hopping sequences
    Ding, Cunsheng
    Moisio, Marko J.
    Yuan, Jin
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (07) : 2606 - 2610
  • [48] ON THE APPLICATION OF AN OPTIMAL SPLINE SAMPLING THEOREM
    ENGELS, W
    STARK, EL
    VOGT, L
    SIGNAL PROCESSING, 1988, 14 (03) : 225 - 236
  • [49] Study on optimal sampling frequency of parameter identification in frequency domain
    Li, Zhongli
    Wang, Chengduan
    Dianzi Keji Daxue Xuebao/Journal of University of Electronic Science and Technology of China, 1997, 26 (04): : 414 - 419
  • [50] Frequency band implementation of non-integer order functions
    Shrivastava, Nitisha
    Varshney, Pragya
    2018 5TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND INTEGRATED NETWORKS (SPIN), 2018, : 852 - 857