Tropical Plucker functions and Kashiwara crystals

被引:1
作者
Danilov, V. I. [1 ]
Karzanov, A. V. [2 ]
Koshevoy, G. A. [3 ,4 ]
机构
[1] RAS, Cent Inst Econ & Math, Moscow 117418, Russia
[2] RAS, Inst Syst Anal, Moscow 117312, Russia
[3] RAS, Cent Inst Econ & Math, Moscow 119002, Russia
[4] Lab JV Poncelet, Moscow 119002, Russia
来源
TROPICAL AND IDEMPOTENT MATHEMATICS AND APPLICATIONS | 2014年 / 616卷
关键词
Crystals; Plucker relations; tiling diagrams; MIRKOVIC-VILONEN POLYTOPES; PATHS; SET;
D O I
10.1090/conm/616/12309
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that Kashiwara crystals of type A can be described by use of tropical Plucker functions (TP-functions) on a hyper-cube and related rhombus tilings. We also illustrate the formation of crystals of types B and C via symmetric TP-functions and tilings.
引用
收藏
页码:77 / 99
页数:23
相关论文
共 17 条
[1]   B2-crystals: Axioms, structure, models [J].
Danilov, V. I. ;
Karzanov, A. V. ;
Koshevoy, G. A. .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2009, 116 (02) :265-289
[2]  
Danilov V.I., 2012, ARXIV12014549MATHCO
[3]   The crossing model for regular An-crystals [J].
Danilov, Vladimir I. ;
Karzanov, Alexander V. ;
Koshevoy, Gleb A. .
JOURNAL OF ALGEBRA, 2008, 320 (09) :3398-3424
[4]   Combinatorics of regular A2-crystals [J].
Danilov, Vladimir I. ;
Karzanov, Alexander V. ;
Koshevoy, Gleb A. .
JOURNAL OF ALGEBRA, 2007, 310 (01) :218-234
[5]   Plucker environments, wiring and tiling diagrams, and weakly separated set-systems [J].
Danilov, Vladimir I. ;
Karzanov, Alexander V. ;
Koshevoy, Gleb A. .
ADVANCES IN MATHEMATICS, 2010, 224 (01) :1-44
[6]  
Danilov VI, 2009, CONTEMP MATH, V495, P127
[7]  
[Данилов Владимир Иванович Danilov Vladimir Ivanovich], 2010, [Успехи математических наук, Russian Mathematical Surveys, Uspekhi matematicheskikh nauk], V65, P67, DOI 10.4213/rm9364
[8]   Rhombic tilings of polygons and classes of reduced words in coxeter groups [J].
Elnitsky, S .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1997, 77 (02) :193-221
[9]   The multidimensional cube recurrence [J].
Henriques, Andre ;
Speyer, David E. .
ADVANCES IN MATHEMATICS, 2010, 223 (03) :1107-1136
[10]   The crystal structure on the set of Mirkovic-Vilonen polytopes [J].
Kamnitzer, Joel .
ADVANCES IN MATHEMATICS, 2007, 215 (01) :66-93