A Preconditioned Fast Parareal Finite Difference Method for Space-Time Fractional Partial Differential Equation

被引:26
作者
Fu, Hongfei [1 ]
Wang, Hong [2 ]
机构
[1] China Univ Petr, Coll Sci, Qingdao 266580, Shandong, Peoples R China
[2] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Space-time fractional partial differential equation; Parareal method; Fast finite difference method; Bi-CGSTAB;
D O I
10.1007/s10915-018-0835-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop a fast parareal finite difference method for space-time fractional partial differential equation. The method properly handles the heavy tail behavior in the numerical discretization, while retaining the numerical advantages of conventional parareal algorithm. At each time step, we explore the structure of the stiffness matrix to develop a matrix-free preconditioned fast Krylov subspace iterative solver for the finite difference method without resorting to any lossy compression. Consequently, the method has significantly reduced computational complexity and memory requirement. Numerical experiments show the strong potential of the method.
引用
收藏
页码:1724 / 1743
页数:20
相关论文
共 44 条
[1]   The fractional-order governing equation of Levy motion [J].
Benson, DA ;
Wheatcraft, SW ;
Meerschaert, MM .
WATER RESOURCES RESEARCH, 2000, 36 (06) :1413-1423
[2]   TOEPLITZ EQUATIONS BY CONJUGATE GRADIENTS WITH CIRCULANT PRECONDITIONER [J].
CHAN, RH ;
STRANG, G .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1989, 10 (01) :104-119
[3]   Conjugate gradient methods for toeplitz systems [J].
Chan, RH ;
Ng, MK .
SIAM REVIEW, 1996, 38 (03) :427-482
[4]   AN OPTIMAL CIRCULANT PRECONDITIONER FOR TOEPLITZ-SYSTEMS [J].
CHAN, TF .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1988, 9 (04) :766-771
[5]   A time-parallel implicit method for accelerating the solution of non-linear structural dynamics problems [J].
Cortial, Julien ;
Farhat, Charbel .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 77 (04) :451-470
[6]   Fractional diffusion in plasma turbulence [J].
del-Castillo-Negrete, D ;
Carreras, BA ;
Lynch, VE .
PHYSICS OF PLASMAS, 2004, 11 (08) :3854-3864
[7]   A FAST FINITE ELEMENT METHOD FOR SPACE-FRACTIONAL DISPERSION EQUATIONS ON BOUNDED DOMAINS IN R2 [J].
Du, Ning ;
Wang, Hong .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (03) :A1614-A1635
[8]   POD/DEIM Reduced-Order Modeling of Time-Fractional Partial Differential Equations with Applications in Parameter Identification [J].
Fu, Hongfei ;
Wang, Hong ;
Wang, Zhu .
JOURNAL OF SCIENTIFIC COMPUTING, 2018, 74 (01) :220-243
[9]   A PRECONDITIONED FAST FINITE DIFFERENCE METHOD FOR SPACE-TIME FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS [J].
Fu, Hongfei ;
Wang, Hong .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2017, 20 (01) :88-116
[10]   Two Alternating Direction Implicit Difference Schemes for Two-Dimensional Distributed-Order Fractional Diffusion Equations [J].
Gao, Guang-hua ;
Sun, Zhi-zhong .
JOURNAL OF SCIENTIFIC COMPUTING, 2016, 66 (03) :1281-1312