Improved effective-one-body description of coalescing nonspinning black-hole binaries and its numerical-relativity completion

被引:121
|
作者
Damour, Thibault [1 ]
Nagar, Alessandro [1 ]
Bernuzzi, Sebastiano [2 ]
机构
[1] Inst Hautes Etud Sci, F-91440 Bures Sur Yvette, France
[2] Univ Jena, Inst Theoret Phys, D-07743 Jena, Germany
来源
PHYSICAL REVIEW D | 2013年 / 87卷 / 08期
关键词
GRAVITATIONAL-RADIATION REACTION; PARTICLE; WAVES;
D O I
10.1103/PhysRevD.87.084035
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We improve the effective-one-body (EOB) description of nonspinning coalescing black-hole binaries by incorporating several recent analytical advances, notably: (i) logarithmic contributions to the conservative dynamics; (ii) resummed horizon-absorption contribution to the orbital angular momentum loss; and (iii) a specific radial component of the radiation-reaction force implied by consistency with the azimuthal one. We then complete this analytically improved EOB model by comparing it to accurate numerical-relativity (NR) simulations performed by the Caltech-Cornell-CITA group for mass ratios q = (1, 2, 3, 4, 6). In particular, the comparison to NR data allows us to determine with high accuracy (similar to 10(-4)) the value of the main EOB radial potential: A(u; nu), where u GM/(Rc(2)) is the interbody gravitational potential and nu = q/(q + 1)(2) is the symmetric mass ratio. We introduce a new technique for extracting from NR data an intrinsic measure of the phase evolution [Q(omega) (omega) diagnostics]. Aligning the NR-completed EOB quadrupolar waveform and the NR one at low frequencies, we find that they keep agreeing (in phase and amplitude) within the NR uncertainties throughout the evolution for all mass ratios considered. We also find good agreement for several subdominant multipoles without having to introduce and tune any extra parameters. DOI: 10.1103/PhysRevD.87.084035
引用
收藏
页数:42
相关论文
共 50 条
  • [1] New effective-one-body description of coalescing nonprecessing spinning black-hole binaries
    Damour, Thibault
    Nagar, Alessandro
    PHYSICAL REVIEW D, 2014, 90 (04):
  • [2] Horizon-absorption effects in coalescing black-hole binaries: An effective-one-body study of the nonspinning case
    Bernuzzi, Sebastiano
    Nagar, Alessandro
    Zenginoglu, Anil
    PHYSICAL REVIEW D, 2012, 86 (10):
  • [3] Accurate effective-one-body waveforms of inspiralling and coalescing black-hole binaries
    Damour, Thibault
    Nagar, Alessandro
    Hannam, Mark
    Husa, Sascha
    Bruegmann, Bernd
    PHYSICAL REVIEW D, 2008, 78 (04):
  • [4] Toward numerical-relativity informed effective-one-body waveforms for dynamical capture black hole binaries
    Andrade, Tomas
    Trenado, Juan
    Albanesi, Simone
    Gamba, Rossella
    Bernuzzi, Sebastiano
    Nagar, Alessandro
    Bustillo, Juan Calderon
    Sanchis-Gual, Nicolas
    Font, Jose A.
    Cook, William
    Daszuta, Boris
    Zappa, Francesco
    Radice, David
    PHYSICAL REVIEW D, 2024, 109 (08)
  • [5] Improved effective-one-body Hamiltonian for spinning black-hole binaries
    Barausse, Enrico
    Buonanno, Alessandra
    PHYSICAL REVIEW D, 2010, 81 (08):
  • [6] Faithful effective-one-body waveforms of equal-mass coalescing black-hole binaries
    Damour, Thibault
    Nagar, Alessandro
    Dorband, Ernst Nils
    Pollney, Denis
    Rezzolla, Luciano
    PHYSICAL REVIEW D, 2008, 77 (08):
  • [7] Horizon-absorbed energy flux in circularized, nonspinning black-hole binaries, and its effective-one-body representation
    Nagar, Alessandro
    Akcay, Sarp
    PHYSICAL REVIEW D, 2012, 85 (04):
  • [8] Faithful effective-one-body waveform of small-mass-ratio coalescing black hole binaries: The eccentric, nonspinning case
    Albanesi, Simone
    Bernuzzi, Sebastiano
    Damour, Thibault
    Nagar, Alessandro
    Placidi, Andrea
    PHYSICAL REVIEW D, 2023, 108 (08)
  • [9] Final spin of a coalescing black-hole binary: An effective-one-body approach
    Damour, Thibault
    Nagar, Alessandro
    PHYSICAL REVIEW D, 2007, 76 (04):
  • [10] Periastron advance in spinning black hole binaries: comparing effective-one-body and numerical relativity
    Hinderer, Tanja
    Buonanno, Alessandra
    Mroue, Abdul H.
    Hemberger, Daniel A.
    Lovelace, Geoffrey
    Pfeiffer, Harald P.
    Kidder, Lawrence E.
    Scheel, Mark A.
    Szilagyi, Bela
    Taylor, Nicholas W.
    Teukolsky, Saul A.
    PHYSICAL REVIEW D, 2013, 88 (08):