The role of confinement on stress-driven grain boundary motion in nanocrystalline aluminum thin films

被引:27
|
作者
Gianola, Daniel S. [1 ]
Farkas, Diana [2 ]
Gamarra, Martin [2 ]
He, Mo-rigen [1 ]
机构
[1] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA
[2] Virginia Tech, Dept Mat Sci & Engn, Blacksburg, VA 24061 USA
基金
美国国家科学基金会;
关键词
MOLECULAR-DYNAMICS SIMULATION; ROOM-TEMPERATURE; MECHANICAL-BEHAVIOR; FCC METALS; PLASTIC-DEFORMATION; GROWTH; AL; MIGRATION; COPPER; TEM;
D O I
10.1063/1.4770357
中图分类号
O59 [应用物理学];
学科分类号
摘要
3D molecular dynamics simulations are performed to investigate the role of microstructural confinement on room temperature stress-driven grain boundary (GB) motion for a general population of GBs in nanocrystalline Al thin films. Detailed analysis and comparison with experimental results reveal how coupled GB migration and GB sliding are manifested in realistic nanoscale networks of GBs. The proximity of free surfaces to GBs plays a significant role in their mobility and results in unique surface topography evolution. We highlight the effects of microstructural features, such as triple junctions, as constraints to otherwise uninhibited GB motion. We also study the pinning effects of impurities segregated to GBs that hinder their motion. Finally, the implications of GB motion as a deformation mechanism governing the mechanical behavior of nanocrystalline materials are discussed. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4770357]
引用
收藏
页数:10
相关论文
共 50 条
  • [21] In situ TEM observations of fast grain-boundary motion in stressed nanocrystalline aluminum films
    Legros, Marc
    Gianola, Daniel S.
    Hemker, Kevin J.
    ACTA MATERIALIA, 2008, 56 (14) : 3380 - 3393
  • [22] Strain-driven grain boundary motion in nanocrystalline materials
    Farkas, Diana
    Mohanty, Som
    Monk, Joshua
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 493 (1-2): : 33 - 40
  • [23] Stress-driven grain growth in ultrafine grained Mg thin film
    Zhang, Y.
    Sharon, J. A.
    Hu, G. L.
    Ramesh, K. T.
    Hemker, K. J.
    SCRIPTA MATERIALIA, 2013, 68 (06) : 424 - 427
  • [24] Analysis of stress-driven grain boundary diffusion. Part II: Degeneracy
    Wilkening, J
    Borucki, L
    Sethian, JA
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2004, 64 (06) : 1864 - 1886
  • [25] Stress-driven grain boundary movement during nanoindentation in tungsten at room temperature
    Javaid, Farhan
    Durst, Karsten
    MATERIALIA, 2018, 1 : 99 - 103
  • [26] Stress-Driven Grain Boundary Structural Transition in Diamond by Machine Learning Potential
    Lu, Chenchen
    Li, Zhen
    Sang, Xinxin
    Fan, Zheyong
    Xu, Xujun
    Zhang, Yingyan
    Xu, Ke
    Cheng, Yanhua
    Zhao, Junhua
    Zheng, Jin-Cheng
    Wei, Ning
    SMALL, 2025,
  • [27] Effects of interstitial defects on stress-driven grain boundary migration in bcc tungsten
    Niu, Liang-Liang
    Peng, Qing
    Gao, Fei
    Chen, Zhe
    Zhang, Ying
    Lu, Guang-Hong
    JOURNAL OF NUCLEAR MATERIALS, 2018, 512 : 246 - 251
  • [28] Stress-driven triple junction reconstruction facilitates cooperative grain boundary deformation
    Chen, Yingbin
    Zhu, Qi
    Han, Jian
    Huang, Tianlin
    Zhang, Ze
    Wang, Jiangwei
    ACTA MATERIALIA, 2025, 283
  • [29] Effects of Free Surface and Heterogeneous Residual Internal Stress on Stress-Driven Grain Growth in Nanocrystalline Metals
    Wang, F.
    Zhao, J.
    Huang, P.
    Schneider, A. S.
    Lu, T. J.
    Xu, K. W.
    JOURNAL OF NANOMATERIALS, 2013, 2013
  • [30] Uniaxial stress-driven coupled grain boundary motion in hexagonal close-packed metals: A molecular dynamics study
    Zong, Hongxiang
    Ding, Xiangdong
    Lookman, Turab
    Li, Ju
    Sun, Jun
    ACTA MATERIALIA, 2015, 82 : 295 - 303