Hyperstability of a quadratic functional equation on abelian group and inner product spaces

被引:3
|
作者
El-Fassi, Iz-Iddine [1 ]
Kim, Gwang Hui [2 ]
机构
[1] Univ Ibn Tofail, Fac Sci, Dept Math, Kenitra, Morocco
[2] Kangnam Univ, Dept Math, Yongin 446702, Gyoenggi, South Korea
来源
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS | 2016年 / 9卷 / 09期
基金
新加坡国家研究基金会;
关键词
Hyperstability; quadratic functional equation; fixed point theorem; ULAM-RASSIAS STABILITY; FIXED-POINT APPROACH; BANACH-SPACES; MAPPINGS;
D O I
10.22436/jnsa.009.09.04
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using the fixed point approach, we prove some results on hyperstability of the following quadratic functional equation f(x + y + z) + f(x - y) + f(x - z) + f(y - z) = 3[f(x) + f(y) + f(z)], in the class of functions from an abelian group into a Banach space. (C) 2016 All rights reserved.
引用
收藏
页码:5353 / 5361
页数:9
相关论文
共 50 条
  • [1] Stability and hyperstability of a quadratic functional equation and a characterization of inner product spaces
    El-Fassi, Iz-iddine
    Park, Choonkil
    Kim, Gwang Hui
    DEMONSTRATIO MATHEMATICA, 2018, 51 (01) : 295 - 303
  • [2] Inner Product Spaces and Quadratic Functional Equations
    Park, Choonkil
    Park, Won-Gil
    Rassias, Themistocles M.
    COMPUTATIONAL ANALYSIS, AMAT 2015, 2016, 155 : 137 - 151
  • [3] Hyperstability of the Frechet Equation and a Characterization of Inner Product Spaces
    Bahyrycz, Anna
    Brzdek, Janusz
    Piszczek, Magdalena
    Sikorska, Justyna
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2013,
  • [4] On the Hyers-Ulam stability and hyperstability of a generalized quadratic functional equation in n-Banach spaces
    Bounader, Nordine
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (01)
  • [5] Inner product spaces and quadratic functional equations
    Jae-Hyeong Bae
    Batool Noori
    M. B. Moghimi
    Abbas Najati
    Advances in Difference Equations, 2021
  • [6] Inner product spaces and quadratic functional equations
    Bae, Jae-Hyeong
    Noori, Batool
    Moghimi, M. B.
    Najati, Abbas
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [7] Hyperstability of the Jensen functional equation in ultrametric spaces
    Almahalebi, Muaadh
    Chahbi, Abdellatif
    AEQUATIONES MATHEMATICAE, 2017, 91 (04) : 647 - 661
  • [8] HYPERSTABILITY OF THE GENERALIZED CAUCHY-JENSEN FUNCTIONAL EQUATION IN ULTRAMETRIC SPACES
    Kaskasem, Prondanai
    Kiln-Eam, Chakkrid
    ACTA MATHEMATICA SCIENTIA, 2019, 39 (04) : 1017 - 1032
  • [9] Hyperstability of the Jensen functional equation
    Bahyrycz, A.
    Piszczek, M.
    ACTA MATHEMATICA HUNGARICA, 2014, 142 (02) : 353 - 365
  • [10] Hyperstability of the Jensen functional equation in ultrametric spaces
    Muaadh Almahalebi
    Abdellatif Chahbi
    Aequationes mathematicae, 2017, 91 : 647 - 661