Existence thresholds and Ramsey properties of random posets

被引:7
作者
Falgas-Ravry, Victor [1 ]
Markstrom, Klas [1 ]
Treglown, Andrew [2 ]
Zhao, Yi [3 ]
机构
[1] Umea Univ, Dept Math & Math Stat, Umea, Sweden
[2] Univ Birmingham, Sch Math, Birmingham, W Midlands, England
[3] Georgia State Univ, Dept Math & Stat, Atlanta, GA 30303 USA
基金
美国国家科学基金会; 英国工程与自然科学研究理事会; 瑞典研究理事会;
关键词
boolean lattice; existence thresholds; Ramsey properties; random posets; RANDOM SUBSETS; FREE FAMILIES;
D O I
10.1002/rsa.20952
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Let P (n) denote the power set of [n], ordered by inclusion, and let P(n, p) denote the random poset obtained from. (n) by retaining each element from P(n) independently at random with probability p and discarding it otherwise. Given any fixed poset F we determine the threshold for the property that P(n, p) contains F as an induced subposet. We also asymptotically determine the number of copies of a fixed poset F in. P(n). Finally, we obtain a number of results on the Ramsey properties of the random poset. P(n, p).
引用
收藏
页码:1097 / 1133
页数:37
相关论文
共 33 条
[1]  
[Anonymous], 1992, Ann. Appl. Probab.
[2]   Boolean Lattices: Ramsey Properties and Embeddings [J].
Axenovich, Maria ;
Walzer, Stefan .
ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2017, 34 (02) :287-298
[3]   Q2-free Families in the Boolean Lattice [J].
Axenovich, Maria ;
Manske, Jacob ;
Martin, Ryan .
ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2012, 29 (01) :177-191
[4]   Applications of Graph Containers in the Boolean Lattice [J].
Balogh, Jozsef ;
Treglown, Andrew ;
Wagner, Adam Zsolt .
RANDOM STRUCTURES & ALGORITHMS, 2016, 49 (04) :845-872
[5]   A random version of Spemer's theorem [J].
Balogh, Jozsef ;
Mycroft, Richard ;
Treglown, Andrew .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2014, 128 :104-110
[6]  
Bollobas B., 1981, Combinatorics (Swansea, 1981), P80
[7]  
Bukh B, 2009, ELECTRON J COMB, V16
[8]  
Chen H.B., ARXIV190911370
[9]   Maximum-size antichains in random set-systems [J].
Collares, Mauricio ;
Morris, Robert .
RANDOM STRUCTURES & ALGORITHMS, 2016, 49 (02) :308-321
[10]   Largest family without A ∨ B ⊆ C ∧ D [J].
De Bonis, A ;
Katona, GOH ;
Swanepoel, KJ .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2005, 111 (02) :331-336