Universal FRFT-based algorithm for parameter estimation of chirp signals

被引:12
作者
Chen, Rong [1 ,2 ]
Wang, Yiming [1 ,2 ]
机构
[1] Soochow Univ, Sch Elect & Informat Engn, Suzhou 215006, Peoples R China
[2] Natl Lab Informat Control Technol Commun Syst, Jiaxing 314001, Peoples R China
基金
中国国家自然科学基金; 国家教育部博士点专项基金资助;
关键词
fractional Fourier transform (FRFT); chirp signal; parameter estimation; observation window; FRACTIONAL FOURIER-TRANSFORM; MULTICOMPONENT LFM SIGNAL;
D O I
10.1109/JSEE.2012.00063
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The realization of the parameter estimation of chirp signals using the fractional Fourier transform (FRFT) is based on the assumption that the sampling duration of practical observed signals would be equal to the time duration of chirp signals contained in the former. However, in many actual circumstances, this assumption seems unreasonable. On the basis of analyzing the practical signal form, this paper derives the estimation error of the existing parameter estimation method and then proposes a novel and universal parameter estimation algorithm. Furthermore, the proposed algorithm is developed which allows the estimation of the practical observed Gaussian windowed chirp signal. Simulation results show that the new algorithm works well.
引用
收藏
页码:495 / 501
页数:7
相关论文
共 20 条
[1]   Employing fractional autocorrelation for fast detection and sweep rate estimation of pulse compression radar waveforms [J].
Akay, Olcay ;
Erozden, Erten .
SIGNAL PROCESSING, 2009, 89 (12) :2479-2489
[2]   LFM signal detection using LPP-Hough transform [J].
Bi, Guoan ;
Li, Xiumei ;
See, Chong Meng Samson .
SIGNAL PROCESSING, 2011, 91 (06) :1432-1443
[3]   Fractional Fourier transform of the Gaussian and fractional domain signal support [J].
Capus, C ;
Brown, K .
IEE PROCEEDINGS-VISION IMAGE AND SIGNAL PROCESSING, 2003, 150 (02) :99-106
[4]   A Fast FRFT Based Detection Algorithm of Multiple Moving Targets in Sea Clutter [J].
Chen, Xiaolong ;
Guan, Jian .
2010 IEEE RADAR CONFERENCE, 2010, :402-406
[5]   Unified fractional Fourier transform and sampling theorem [J].
Erseghe, T ;
Kraniauskas, P ;
Cariolaro, G .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (12) :3419-3423
[6]  
Haimovich A. M., 1994, P SPIES INT S AER SE, P238
[7]   Method for defining a class of fractional operations [J].
Kraniauskas, P ;
Cariolaro, G ;
Erseghe, T .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (10) :2804-2807
[8]  
Li Y. P., 2005, REMOTE CONTROL, V26, P1
[9]  
Long Zhang, 2008, 2008 9th International Conference on Signal Processing (ICSP 2008), P2351, DOI 10.1109/ICOSP.2008.4697621
[10]   Digital computation of the fractional Fourier transform [J].
Ozaktas, HM ;
Ankan, O ;
Kutay, MA ;
Bozdagi, G .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1996, 44 (09) :2141-2150