Structural and Kinetic Profiling of Allosteric Modulation of Duplex DNA Induced by DNA-Binding Polyamide Analogues

被引:8
作者
Aman, Khalid [1 ]
Padroni, Giacomo [1 ]
Parkinson, John A. [1 ]
Welte, Thomas [2 ]
Burley, Glenn A. [1 ]
机构
[1] Univ Strathclyde, Dept Pure & Appl Chem, Graham Bldg 295 Cathedral St, Glasgow G1 1XL, Lanark, Scotland
[2] Dynam Biosensors GmbH, D-82152 Planegg, Germany
基金
英国科学技术设施理事会; 英国生物技术与生命科学研究理事会;
关键词
allosterism; binding kinetics; minor groove binder; NMR characterisation; pyrrole-imidazole polyamide; PYRROLE-IMIDAZOLE POLYAMIDES; HIGHLY EFFICIENT SYNTHESIS; MINOR-GROOVE; BETA-ALANINE; PYRROLE/IMIDAZOLE POLYAMIDES; SEQUENCE RECOGNITION; HAIRPIN POLYAMIDES; TRANSCRIPTION; SUPPRESSION; INHIBITION;
D O I
10.1002/chem.201805338
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A combined structural and quantitative biophysical profile of the DNA binding affinity, kinetics and sequence-selectivity of hairpin polyamide analogues is described. DNA duplexes containing either target polyamide binding sites or mismatch sequences are immobilized on a microelectrode surface. Quantitation of the DNA binding profile of polyamides containing N-terminal 1-alkylimidazole (Im) units exhibit picomolar binding affinities for their target sequences, whereas 5-alkylthiazole (Nt) units are an order of magnitude lower (low nanomolar). Comparative NMR structural analyses of the polyamide series shows that the steric bulk distal to the DNA-binding face of the hairpin iPr-Nt polyamide plays an influential role in the allosteric modulation of the overall DNA duplex structure. This combined kinetic and structural study provides a foundation to develop next-generation hairpin designs where the DNA-binding profile of polyamides is reconciled with their physicochemical properties.
引用
收藏
页码:2757 / 2763
页数:7
相关论文
共 59 条
  • [1] Recognition of the DNA Minor Groove by Thiazotropsin Analogues
    Alniss, Hasan Y.
    Salvia, Marie-Virginie
    Sadikov, Mykhailo
    Golovchenko, Igor
    Anthony, Nahoum G.
    Khalaf, Abedawn I.
    MacKay, Simon P.
    Suckling, Colin J.
    Parkinson, John A.
    [J]. CHEMBIOCHEM, 2014, 15 (13) : 1978 - 1990
  • [2] Short lexitropsin that recognizes the DNA minor groove at 5′-ACTAGT-3′:: Understanding the role of isopropyl-thiazole
    Anthony, NG
    Johnston, BF
    Khalaf, AI
    MacKay, SP
    Parkinson, JA
    Suckling, CJ
    Waigh, RD
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (36) : 11338 - 11349
  • [3] Solid phase synthesis of polyamides containing imidazole and pyrrole amino acids
    Baird, EE
    Dervan, PB
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1996, 118 (26) : 6141 - 6146
  • [4] Fluorescent sequence-specific dsDNA binding oligomers
    Chenoweth, David M.
    Viger, Anne
    Dervan, Peter B.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (08) : 2216 - +
  • [5] Programmable oligomers targeting 5′-GGGG-3′ in the minor groove of DNA and NF-κB binding inhibition
    Chenoweth, David M.
    Poposki, Julie A.
    Marques, Michael A.
    Dervan, Peter B.
    [J]. BIOORGANIC & MEDICINAL CHEMISTRY, 2007, 15 (02) : 759 - 770
  • [6] Structural Basis for Cyclic Py-Im Polyamide Allosteric Inhibition of Nuclear Receptor Binding
    Chenoweth, David M.
    Dervan, Peter B.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (41) : 14521 - 14529
  • [7] Allosteric modulation of DNA by small molecules
    Chenoweth, David M.
    Dervan, Peter B.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (32) : 13175 - 13179
  • [8] switchSENSE: A new technology to study protein-RNA interactions
    Clery, Antoine
    Sohier, Thibault J. M.
    Welte, Thomas
    Langer, Andreas
    Allain, Frederic H. T.
    [J]. METHODS, 2017, 118 : 137 - 145
  • [9] Recognition of the DNA minor groove by pyrrole-imidazole polyamides
    Dervan, PB
    Edelson, BS
    [J]. CURRENT OPINION IN STRUCTURAL BIOLOGY, 2003, 13 (03) : 284 - 299
  • [10] Dervan Peter B., 2005, Current Medicinal Chemistry - Anti-Cancer Agents, V5, P373, DOI 10.2174/1568011054222346