Reduced order distributed boundary control of thermal transients in microsystems

被引:25
作者
Bleris, LG [1 ]
Kothare, MV [1 ]
机构
[1] Lehigh Univ, Dept Elect & Comp Engn, Microchem Syst Lab, Bethlehem, PA 18015 USA
基金
美国国家科学基金会;
关键词
boundary reduced order control; empirical eigenfunctions; microsystems; receding horizon control (RHC);
D O I
10.1109/TCST.2005.854332
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study the problem of regulation of thermal transients in a microsystem using empirical eigenfunctions. Proper orthogonal decomposition (POD) is applied to an ensemble of data to obtain the dominant structures, called empirical eigenfunctions, that characterize the dynamics of the process. These eigenfunctions are the most efficient basis for capturing the dynamics of an infinite dimensional process with a finite number of modes. In contrast to published approaches, we propose a new receding horizon boundary control scheme using the empirical eigenfunctions in a constrained optimization procedure to track a desired spatiotemporal profile. Finite element method (FEM) simulations of heat transfer are provided and used in order to implement and test the performance of the controller.
引用
收藏
页码:853 / 867
页数:15
相关论文
共 54 条
[11]   Low-order empirical modeling of distributed parameter systems using temporal and spatial eigenfunctions [J].
Bleris, LG ;
Kothare, MV .
COMPUTERS & CHEMICAL ENGINEERING, 2005, 29 (04) :817-827
[12]  
Bleris LG, 2003, P AMER CONTR CONF, P1308
[13]  
BLERIS LG, 2003, P 1 INT C MATH INF I, P162
[14]  
BLERIS LG, 2004, P 7 IFAC S DYN CONTR
[15]  
BRENCHLEY DL, 1998, P 2 INT C MICR TECHN, P18
[16]  
Christofides P. D., 2001, SYS CON FDN
[17]   Robust control of hyperbolic PDE systems [J].
Christofides, PD ;
Daoutidis, P .
CHEMICAL ENGINEERING SCIENCE, 1998, 53 (01) :85-105
[18]   Control of nonlinear distributed process systems: Recent developments and challenges [J].
Christofides, PD .
AICHE JOURNAL, 2001, 47 (03) :514-518
[19]   Finite-dimensional control of parabolic PDE systems using approximate inertial manifolds [J].
Christofides, PD ;
Daoutidis, P .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 216 (02) :398-420
[20]   ROTATION OF EIGENVECTORS BY A PERTURBATION .3. [J].
DAVIS, C ;
KAHAN, WM .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1970, 7 (01) :1-&