Reduced order distributed boundary control of thermal transients in microsystems

被引:25
作者
Bleris, LG [1 ]
Kothare, MV [1 ]
机构
[1] Lehigh Univ, Dept Elect & Comp Engn, Microchem Syst Lab, Bethlehem, PA 18015 USA
基金
美国国家科学基金会;
关键词
boundary reduced order control; empirical eigenfunctions; microsystems; receding horizon control (RHC);
D O I
10.1109/TCST.2005.854332
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study the problem of regulation of thermal transients in a microsystem using empirical eigenfunctions. Proper orthogonal decomposition (POD) is applied to an ensemble of data to obtain the dominant structures, called empirical eigenfunctions, that characterize the dynamics of the process. These eigenfunctions are the most efficient basis for capturing the dynamics of an infinite dimensional process with a finite number of modes. In contrast to published approaches, we propose a new receding horizon boundary control scheme using the empirical eigenfunctions in a constrained optimization procedure to track a desired spatiotemporal profile. Finite element method (FEM) simulations of heat transfer are provided and used in order to implement and test the performance of the controller.
引用
收藏
页码:853 / 867
页数:15
相关论文
共 54 条
[1]  
Aamo OM, 2001, P AMER CONTR CONF, P1930, DOI 10.1109/ACC.2001.946023
[2]  
[Anonymous], 2001, FEMLAB REFERENCE MAN, V2nd
[3]  
[Anonymous], 2003, Model Predictive Control
[4]   Dynamic optimization of dissipative PDE systems using nonlinear order reduction [J].
Armaou, A ;
Christofides, PD .
CHEMICAL ENGINEERING SCIENCE, 2002, 57 (24) :5083-5114
[5]  
ATHAVALE MM, 2001, P INT C MOD SIM MICR, P574
[6]   Proper orthogonal decomposition for reduced basis feedback controllers for parabolic equations [J].
Atwell, JA ;
King, BB .
MATHEMATICAL AND COMPUTER MODELLING, 2001, 33 (1-3) :1-19
[7]   Finite-dimensional approximation and control of non-linear parabolic PDE systems [J].
Baker, J ;
Christofides, PD .
INTERNATIONAL JOURNAL OF CONTROL, 2000, 73 (05) :439-456
[8]   Nonlinear control of incompressible fluid flow: Application to Burgers' equation and 2D channel flow [J].
Baker, J ;
Armaou, A ;
Christofides, PD .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 252 (01) :230-255
[9]   Optimization of transport-reaction processes using nonlinear model reduction [J].
Bendersky, E ;
Christofides, PD .
CHEMICAL ENGINEERING SCIENCE, 2000, 55 (19) :4349-4366
[10]   Entropy of spatiotemporal data as a dynamic truncation indicator for model reduction applications [J].
Bleris, LG ;
Kothare, MV .
ACC: Proceedings of the 2005 American Control Conference, Vols 1-7, 2005, :3145-3150