A higher rank generalization of the (rank one) Racah algebra is obtained as the symmetry algebra of the Laplace-Dunkl operator associated to the Z(2)(n) root system. This algebra is also the invariance algebra of the generic superintegrable model on the n-sphere. Bases of Dunkl harmonics are constructed explicitly using a Cauchy-Kovalevskaia theorem. These bases consist of joint eigenfunctions of labelling Abelian subalgebras of the higher rank Racah algebra. A method to obtain expressions for both the connection coefficients between these bases and the action of the symmetries on these bases is presented.
机构:
Hebei Normal Univ, Coll Math & Informat Sci, Shijiazhuang 050024, Peoples R ChinaHebei Normal Univ, Coll Math & Informat Sci, Shijiazhuang 050024, Peoples R China
Gao, Suogang
Wang, Yan
论文数: 0引用数: 0
h-index: 0
机构:
Hebei Normal Univ, Coll Math & Informat Sci, Shijiazhuang 050024, Peoples R ChinaHebei Normal Univ, Coll Math & Informat Sci, Shijiazhuang 050024, Peoples R China
Wang, Yan
Hou, Bo
论文数: 0引用数: 0
h-index: 0
机构:
Hebei Normal Univ, Coll Math & Informat Sci, Shijiazhuang 050024, Peoples R ChinaHebei Normal Univ, Coll Math & Informat Sci, Shijiazhuang 050024, Peoples R China
机构:
Hebei Normal Univ, Coll Math & Informat Sci, Shijiazhuang 050024, Peoples R ChinaHebei Normal Univ, Coll Math & Informat Sci, Shijiazhuang 050024, Peoples R China
Gao, Suogang
Wang, Yan
论文数: 0引用数: 0
h-index: 0
机构:
Hebei Normal Univ, Coll Math & Informat Sci, Shijiazhuang 050024, Peoples R ChinaHebei Normal Univ, Coll Math & Informat Sci, Shijiazhuang 050024, Peoples R China
Wang, Yan
Hou, Bo
论文数: 0引用数: 0
h-index: 0
机构:
Hebei Normal Univ, Coll Math & Informat Sci, Shijiazhuang 050024, Peoples R ChinaHebei Normal Univ, Coll Math & Informat Sci, Shijiazhuang 050024, Peoples R China