LIFTING TO MAXIMAL RIGID OBJECTS IN 2-CALABI-YAU TRIANGULATED CATEGORIES

被引:1
作者
Xie, Yunli [1 ,2 ]
Liu, Pin [2 ]
机构
[1] Sichuan Univ, Dept Math, Chengdu 610064, Peoples R China
[2] Southwest Jiaotong Univ, Dept Math, Chengdu 610031, Peoples R China
关键词
2-Calabi-Yau category; tilting modules; maximal rigid objects; CLUSTER; ALGEBRAS; MODULES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that a tilting module over the endomorphism algebra of a maximal rigid object in a 2-Calabi-Yau triangulated category lifts to a maximal rigid object in this 2-Calabi-Yau triangulated category. This strengthens recent work of Fu and Liu for cluster-tilting objects.
引用
收藏
页码:3361 / 3367
页数:7
相关论文
共 15 条
[1]   PREPROJECTIVE MODULES OVER ARTIN ALGEBRAS [J].
AUSLANDER, M ;
SMALO, SO .
JOURNAL OF ALGEBRA, 1980, 66 (01) :61-122
[2]   The Grothendieck group of a cluster category [J].
Barot, M. ;
Kussin, D. ;
Lenzing, H. .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2008, 212 (01) :33-46
[3]  
Bongartz K., 1981, Lect. Not. Math, V903, P26, DOI DOI 10.1007/BFB0092982
[4]   Cluster structures from 2-Calabi-Yau categories with loops [J].
Buan, Aslak Bakke ;
Marsh, Robert J. ;
Vatne, Dagfinn F. .
MATHEMATISCHE ZEITSCHRIFT, 2010, 265 (04) :951-970
[5]   Cluster tilting for one-dimensional hypersurface singularities [J].
Burban, Igor ;
Iyama, Osamu ;
Keller, Bernhard ;
Reiten, Idun .
ADVANCES IN MATHEMATICS, 2008, 217 (06) :2443-2484
[6]   LIFTING TO CLUSTER-TILTING OBJECTS IN 2-CALABI-YAU TRIANGULATED CATEGORIES [J].
Fu, Changjian ;
Liu, Pin .
COMMUNICATIONS IN ALGEBRA, 2009, 37 (07) :2410-2418
[7]   TILTED ALGEBRAS [J].
HAPPEL, D ;
RINGEL, CM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 274 (02) :399-443
[8]   On the relation between cluster and classical tilting [J].
Holm, Thorsten ;
Jorgensen, Peter .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2010, 214 (09) :1523-1533
[9]  
Keller B., 2010, LONDON MATH SOC LECT, V375, P76
[10]   Cluster-tilted algebras are Gorenstein and stably Calabi-Yau [J].
Keller, Bernhard ;
Reiten, Idun .
ADVANCES IN MATHEMATICS, 2007, 211 (01) :123-151