Generation of a Four-Class Attenuation Map for MRI-Based Attenuation Correction of PET Data in the Head Area Using a Novel Combination of STE/Dixon-MRI and FCM Clustering

被引:21
|
作者
Khateri, Parisa [1 ]
Rad, Hamidreza Saligheh [1 ,2 ]
Jafari, Amir Homayoun [2 ,3 ,4 ]
Kazerooni, Anahita Fathi [1 ,2 ]
Akbarzadeh, Afshin [1 ]
Moghadam, Mohsen Shojae [3 ,4 ]
Aryan, Arvin [5 ]
Ghafarian, Pardis [6 ,7 ]
Ay, Mohammad Reza [1 ,2 ]
机构
[1] Univ Tehran Med Sci, Res Ctr Mol & Cellular Imaging, Tehran, Iran
[2] Univ Tehran Med Sci, Dept Med Phys & Biomed Engn, Tehran, Iran
[3] Univ Tehran Med Sci, Res Ctr Biomed & Robot Technol, Tehran, Iran
[4] Payambaran Hosp, MRI Imaging Ctr, Tehran, Iran
[5] Univ Tehran Med Sci, Imam Khomeini Hosp Complex, Imaging Ctr, Tehran, Iran
[6] Shahid Beheshti Univ Med Sci, Natl Res Inst TB & Lung Dis, Chron Resp Dis Res Ctr, Tehran, Iran
[7] Shahid Beheshti Univ Med Sci, Masih Daneshvari Hosp, PET CT & Cyclotron Ctr, Tehran, Iran
关键词
PET/MRI; Attenuation correction; Attenuation map; STE pulse sequence; FCM technique; PET/MRI; RECONSTRUCTION; ATLAS;
D O I
10.1007/s11307-015-0849-1
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
The aim of this study is to generate a four-class magnetic resonance imaging (MRI)-based attenuation map (mu-map) for attenuation correction of positron emission tomography (PET) data of the head area using a novel combination of short echo time (STE)/Dixon-MRI and a dedicated image segmentation method. MR images of the head area were acquired using STE and two-point Dixon sequences. mu-maps were derived from MRI images based on a fuzzy C-means (FCM) clustering method along with morphologic operations. Quantitative assessment was performed to evaluate generated MRI-based mu-maps compared to X-ray computed tomography (CT)-based mu-maps. The voxel-by-voxel comparison of MR-based and CT-based segmentation results yielded an average of more than 95 % for accuracy and specificity in the cortical bone, soft tissue, and air region. MRI-based mu-maps show a high correlation with those derived from CT scans (R (2) > 0.95). Results indicate that STE/Dixon-MRI data in combination with FCM-based segmentation yields precise MR-based mu-maps for PET attenuation correction in hybrid PET/MRI systems.
引用
收藏
页码:884 / 892
页数:9
相关论文
共 27 条
  • [21] Impact of CT-Based and MRI-Based Attenuation Correction Methods on 18 F-FDG PET Quantification Using PET Phantoms
    Cheng-Han Wu
    Chun-Yuan Tu
    Li-Chen Shen
    Yueh-Hsun Lu
    Bang-Hung Yang
    Journal of Medical and Biological Engineering, 2022, 42 : 374 - 381
  • [22] Zero-TE MRI-based attenuation correction for chest FDG PET/MRI with deep learning using unpaired PET/CT data: Quantitative analysis for difference in values of normal organ and malignant lesions
    Nogami, Munenobu
    Matsuo, Hidetoshi
    Nishio, Mizuho
    Zeng, Feibi
    Inukai, Junko
    Kurimoto, Takako
    Kubo, Kazuhiro
    Kono, Atsushi
    Murakami, Takamichi
    JOURNAL OF NUCLEAR MEDICINE, 2021, 62
  • [23] PET attenuation correction of chest FDG PET/MRI: Deep learning-based denoising and pseudo-CT generation using fast zero-TE MRI and unpaired PET/CT data
    Nogami, M.
    Matsuo, H.
    Nishio, M.
    Tachibana, M.
    Inukai-Inoue, J.
    Zeng, F.
    Kubo, K.
    Kurimoto, T.
    Murakami, T.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2023, 50 (SUPPL 1) : S486 - S487
  • [24] External validation of deep learning-based attenuation correction for chest FDG PET/MRI using Zero-TE MRI and unpaired PET/CT data
    Nogami, M.
    Matsuo, H.
    Tachibana, M.
    Inukai, J. I.
    Zeng, F.
    Kurimoto, T.
    Kubo, K.
    Okazawa, H.
    Murakami, T.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2024, 51 : S131 - S132
  • [25] Test-retest repeatability of deep learning-based attenuation correction for chest FDG PET/MRI using Zero-TE MRI and unpaired PET/CT data
    Nogami, Munenobu
    Matsuo, Hidetoshi
    Nishio, Mizuho
    Zeng, Feibi
    Tachibana, Miho
    Inukai, Junko
    Kurimoto, Takako
    Kubo, Kazuhiro
    Okazawa, Hidehiko
    Murakami, Takamichi
    JOURNAL OF NUCLEAR MEDICINE, 2024, 65
  • [26] Zero-Echo-Time and Dixon Deep Pseudo-CT (ZeDD CT): Direct Generation of Pseudo-CT Images for Pelvic PET/MRI Attenuation Correction Using Deep Convolutional Neural Networks with Multiparametric MRI
    Leynes, Andrew P.
    Yang, Jaewon
    Wiesinger, Florian
    Kaushik, Sandeep S.
    Shanbhag, Dattesh D.
    Seo, Youngho
    Hope, Thomas A.
    Larson, Peder E. Z.
    JOURNAL OF NUCLEAR MEDICINE, 2018, 59 (05) : 852 - 858
  • [27] Hybrid PET/MR Imaging: An Algorithm to Reduce Metal Artifacts from Dental Implants in Dixon-Based Attenuation Map Generation Using a Multiacquisition Variable-Resonance Image Combination Sequence
    Burger, Irene A.
    Wurnig, Moritz C.
    Becker, Anton S.
    Kenkel, David
    Delso, Gaspar
    Veit-Haibach, Patrick
    Boss, Andreas
    JOURNAL OF NUCLEAR MEDICINE, 2015, 56 (01) : 93 - 97