Interfacial design principle of sodiophilicity-regulated interlayer deposition in a sandwiched sodium metal anode

被引:41
作者
Jin, Xin [1 ]
Zhao, Yue [1 ]
Shen, Zihan [1 ]
Pu, Jun [1 ]
Xu, Xiangxing [2 ]
Zhong, Chenglin [1 ]
Zhang, Shuo [1 ]
Li, Jiachen [1 ]
Zhang, Huigang [1 ,3 ]
机构
[1] Nanjing Univ, Coll Engn & Appl Sci, Collaborat Innovat Ctr Adv Microstruct, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
[2] Nanjing Normal Univ, Sch Chem & Mat Sci, Jiangsu Key Lab Biofunct Mat, Nanjing 210046, Jiangsu, Peoples R China
[3] Nankai Univ, Key Lab Adv Energy Mat Chem, Minist Educ, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
Sodium batteries; Interfacial energy; Cyclability; Sodiophilicity; Interlayer plating; ION BATTERIES; CURRENT COLLECTOR; COMPOSITE ANODES; NA; ELECTROLYTES; GROWTH;
D O I
10.1016/j.ensm.2020.06.040
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sodium (Na) metal anodes provide the base for the high specific energy of rechargeable Na batteries. However, non-uniform dendrite growth, volume change, and low Coulombic efficiency of Na metal anodes cause safety concerns and poor cyclability, hindering the practical applications of Na batteries. Herein, we proposed an interfacial design principle to construct sodiophilicity-regulated Na metal anodes. Through modeling the interfacial interaction that appears in a sodiated Sn-O-C system, we discovered and experimentally confirmed that the intermediate phases of Na2O and/or Na15Sn4 lower the nucleation overpotentials and guide the Na deposition because of the strong binding to Na metal. More importantly, the poor cyclability caused by the loss of sodiophilic sites can be dramatically improved by designing a strong interaction between sodiophilic agents and conducive scaffolds. Following the principle, we sandwiched SnO2 nanodots between reduced graphene oxide (rGO) layers to form a monolithic Na metal anode and pre-coated it with artificial solid electrolyte interphase (SEI). The resultant layered sandwich structure enables a unique interlayer Na deposition through the thickness direction, thereby leading to a stable SEI and enhanced cyclability. This interfacial principle provides a rational design basis for durable and efficient Na metal anodes.
引用
收藏
页码:221 / 229
页数:9
相关论文
共 55 条
[41]   Ultrafine SnO2 nanoparticle loading onto reduced graphene oxide as anodes for sodium-ion batteries with superior rate and cycling performances [J].
Wang, Yun-Xiao ;
Lim, Young-Geun ;
Park, Min-Sik ;
Chou, Shu-Lei ;
Kim, Jung Ho ;
Liu, Hua-Kun ;
Dou, Shi-Xue ;
Kim, Young-Jun .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (02) :529-534
[42]   Conducting Polymer Paper-Derived Mesoporous 3D N-doped Carbon Current Collectors for Na and Li Metal Anodes: A Combined Experimental and Theoretical Study [J].
Wang, Zhaohui ;
Li, Mingkai ;
Ruan, Changqing ;
Liu, Chenjuan ;
Zhang, Chao ;
Xu, Chao ;
Edstrom, Kristina ;
Stromme, Maria ;
Nyholm, Leif .
JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (41) :23352-23363
[43]   "All-In-One" integrated ultrathin SnS2@3D multichannel carbon matrix power high-areal-capacity lithium battery anode [J].
Xu, Hongyi ;
Peng, Chengxin ;
Yan, Yuhua ;
Dong, Fei ;
Sun, Hao ;
Yang, Junhe ;
Zheng, Shiyou .
CARBON ENERGY, 2019, 1 (02) :276-288
[44]   A High-Kinetics Sulfur Cathode with a Highly Efficient Mechanism for Superior Room-Temperature Na-S Batteries [J].
Yan, Zichao ;
Liang, Yaru ;
Xiao, Jin ;
Lai, Weihong ;
Wang, Wanlin ;
Xia, Qingbing ;
Wang, Yunxiao ;
Gu, Qinfen ;
Lu, Huanming ;
Chou, Shu-Lei ;
Liu, Yong ;
Liu, Huakun ;
Dou, Shi-Xue .
ADVANCED MATERIALS, 2020, 32 (08)
[45]   Realizing a highly stable sodium battery with dendrite-free sodium metal composite anodes and O3-type cathodes [J].
Ye, Huan ;
Wang, Cao-Yu ;
Zuo, Tong-Tong ;
Wang, Peng-Fei ;
Yin, Ya-Xia ;
Zheng, Zi-Jian ;
Wang, Ping ;
Cheng, Jian ;
Cao, Fei-Fei ;
Guo, Yu-Guo .
NANO ENERGY, 2018, 48 :369-376
[46]   Macroporous Catalytic Carbon Nanotemplates for Sodium Metal Anodes [J].
Yoon, Hyeon Ji ;
Kim, Na Rae ;
Jin, Hyoung-Joon ;
Yun, Young Soo .
ADVANCED ENERGY MATERIALS, 2018, 8 (06)
[47]   A graphite intercalation compound associated with liquid Na-K towards ultra-stable and high-capacity alkali metal anodes [J].
Zhang, Leyuan ;
Peng, Sangshan ;
Ding, Yu ;
Guo, Xuelin ;
Qian, Yumin ;
Celio, Hugo ;
He, Gaohong ;
Yu, Guihua .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (06) :1989-1998
[48]   An Alternative to Lithium Metal Anodes: Non-dendritic and Highly Reversible Sodium Metal Anodes for Li-Na Hybrid Batteries [J].
Zhang, Qiu ;
Lu, Yanying ;
Miao, Licheng ;
Zhao, Qing ;
Xia, Kexin ;
Liang, Jing ;
Chou, Shu-Lei ;
Chen, Jun .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (45) :14796-14800
[49]   Achieving a stable Na metal anode with a 3D carbon fibre scaffold [J].
Zhang, Qiu ;
Lu, Yanying ;
Zhou, Meng ;
Liang, Jing ;
Tao, Zhanliang ;
Chen, Jun .
INORGANIC CHEMISTRY FRONTIERS, 2018, 5 (04) :864-869
[50]   A 3D Lithium/Carbon Fiber Anode with Sustained Electrolyte Contact for Solid-State Batteries [J].
Zhang, Ying ;
Shi, Yang ;
Hu, Xin-Cheng ;
Wang, Wen-Peng ;
Wen, Rui ;
Xin, Sen ;
Guo, Yu-Guo .
ADVANCED ENERGY MATERIALS, 2020, 10 (03)