{112} ⟨1 11⟩ Twinning during ω to body-centered cubic transition

被引:82
作者
Wu, S. Q. [1 ,2 ]
Ping, D. H. [1 ]
Yamabe-Mitarai, Y. [1 ]
Xiao, W. L. [1 ]
Yang, Y. [3 ,4 ]
Hu, Q. M. [5 ]
Li, G. P. [2 ]
Yang, R. [2 ,5 ]
机构
[1] Natl Inst Mat Sci, Tsukuba, Ibaraki 3050047, Japan
[2] Chinese Acad Sci, Inst Met Res, Shenyang 110016, Peoples R China
[3] Cent Res Inst, Baosteel Grp Cooperat, Shanghai 201900, Peoples R China
[4] Baosteel Special Steel Co Ltd, Shanghai 200940, Peoples R China
[5] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
关键词
Twin; Metals and alloys; Titanium alloy; Microstructure; First-principles calculation; MULTILAYER STACKING-FAULTS; POTENTIAL MODEL; BCC METALS; ALLOY; DEFORMATION; TRANSFORMATION; APPROXIMATION; MARTENSITE; PHASE; TWINS;
D O I
10.1016/j.actamat.2013.09.040
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We propose an omega-lattice mechanism that is irrelevant to dislocation behaviors for a popular twinning ({112}< 1 1 1 >-type) system in body-centered-cubic (bcc) metals and alloys. The twinning process is dependent on the reverse transformation of omega (hexagonal) -> bcc. The driving force of the twinning is attributed to the instability of a high density of nanoscale metastable omega precursors, and the mechanism has been experimentally and theoretically confirmed in bcc-Ti alloys with the {1 1 2}< 1 1 1 >-type twin formed under conditions free of external stress and internal strain. The omega-lattice mechanism involves bcc lattice shuffling only, thus can be applied to all bcc metals and alloys. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:122 / 128
页数:7
相关论文
共 27 条
[1]  
[Anonymous], 1992, THEORY DISLOCATIONS
[2]   COMPUTER-SIMULATION STUDY OF STRUCTURES OF TWIN BOUNDARIES IN BODY-CENTERED CUBIC-CRYSTALS [J].
BRISTOWE, PD ;
CROCKER, AG .
PHILOSOPHICAL MAGAZINE, 1975, 31 (03) :503-517
[3]   DEFORMATION TWINNING [J].
CHRISTIAN, JW ;
MAHAJAN, S .
PROGRESS IN MATERIALS SCIENCE, 1995, 39 (1-2) :1-157
[4]   TWINNED MARTENSITE [J].
CROCKER, AG .
ACTA METALLURGICA, 1962, 10 (FEB) :113-&
[5]   Microstructural evolution and ductility improvement of a Ti-30Nb alloy with Pd addition [J].
Cui, C. Y. ;
Ping, D. H. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 471 (1-2) :248-252
[6]   Experimental evidence of concurrent compositional and structural instabilities leading to ω precipitation in titanium-molybdenum alloys [J].
Devaraj, A. ;
Nag, S. ;
Srinivasan, R. ;
Williams, R. E. A. ;
Banerjee, S. ;
Banerjee, R. ;
Fraser, H. L. .
ACTA MATERIALIA, 2012, 60 (02) :596-609
[7]   Twinning in alpha iron [J].
Greninger, AB .
NATURE, 1935, 135 :916-917
[8]   COHERENT-POTENTIAL APPROXIMATION FOR A "NONOVERLAPPING-MUFFIN-TIN-POTENTIAL MODEL OF RANDOM SUBSTITUTIONAL ALLOYS [J].
GYORFFY, BL .
PHYSICAL REVIEW B, 1972, 5 (06) :2382-&
[9]   INHOMOGENEOUS ELECTRON-GAS [J].
RAJAGOPAL, AK ;
CALLAWAY, J .
PHYSICAL REVIEW B, 1973, 7 (05) :1912-1919
[10]   Fatigue properties of a metastable β-type titanium alloy with reversible phase transformation [J].
Li, S. J. ;
Cui, T. C. ;
Hao, Y. L. ;
Yang, R. .
ACTA BIOMATERIALIA, 2008, 4 (02) :305-317