SOLVING CHANCE-CONSTRAINED PROBLEMS VIA A SMOOTH SAMPLE-BASED NONLINEAR APPROXIMATION

被引:45
作者
Pena-Ordieres, Alejandra [1 ]
Luedtke, James R. [2 ]
Wachter, Andreas [1 ]
机构
[1] Northwestern Univ, Dept Ind Engn & Management Sci, Evanston, IL 60208 USA
[2] Univ Wisconsin, Dept Ind & Syst Engn, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
chance constraints; nonlinear optimization; quantile function; sample average approximation; smoothing; sequential quadratic programming; trust region; PROBABILISTIC CONSTRAINTS; CONVEX APPROXIMATIONS; OPTIMIZATION; ALGORITHM; PROGRAMS;
D O I
10.1137/19M1261985
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a new method for solving nonlinear continuous optimization problems with chance constraints. Our method is based on a reformulation of the probabilistic constraint as a quantile function. The quantile function is approximated via a differentiable sample average approximation. We provide theoretical statistical guarantees of the approximation and illustrate empirically that the reformulation can be directly used by standard nonlinear optimization solvers in the case of single chance constraints. Furthermore, we propose an SeiQP-type trust -region method to solve instances with joint chance constraints. We demonstrate the performance of the method on several problems and show that it scales well with the sample size and that the smoothing can be used to counteract the bias in the chance constraint approximation induced by the sample approximation.
引用
收藏
页码:2221 / 2250
页数:30
相关论文
共 46 条
[1]   A nonparametric approach to calculating value-at-risk [J].
Alemany, Ramon ;
Bolance, Catalina ;
Guillen, Montserrat .
INSURANCE MATHEMATICS & ECONOMICS, 2013, 52 (02) :255-262
[2]  
[Anonymous], 2014, MOS-SIAM Series on Optimization
[3]   A NOTE ON THE ESTIMATION OF A DISTRIBUTION FUNCTION AND QUANTILES BY A KERNEL-METHOD [J].
AZZALINI, A .
BIOMETRIKA, 1981, 68 (01) :326-328
[4]   OR-LIBRARY - DISTRIBUTING TEST PROBLEMS BY ELECTRONIC MAIL [J].
BEASLEY, JE .
JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 1990, 41 (11) :1069-1072
[5]   Chance-Constrained Optimal Power Flow: Risk-Aware Network Control under Uncertainty [J].
Bienstock, Daniel ;
Chertkov, Michael ;
Harnett, Sean .
SIAM REVIEW, 2014, 56 (03) :461-495
[6]   Probabilistic constraints via SQP solver: application to a renewable energy management problem [J].
Bremer I. ;
Henrion R. ;
Möller A. .
Computational Management Science, 2015, 12 (3) :435-459
[7]   Uncertain convex programs: randomized solutions and confidence levels [J].
Calafiore, G ;
Campi, MC .
MATHEMATICAL PROGRAMMING, 2005, 102 (01) :25-46
[8]   The scenario approach for systems and control design [J].
Campi, Marco C. ;
Garatti, Simone ;
Prandini, Maria .
ANNUAL REVIEWS IN CONTROL, 2009, 33 (02) :149-157
[9]  
Cao Y., 2017, A sigmoidal approximation for chance-constrained nonlinear programs
[10]   COST HORIZONS AND CERTAINTY EQUIVALENTS - AN APPROACH TO STOCHASTIC-PROGRAMMING OF HEATING OIL [J].
CHARNES, A ;
COOPER, WW ;
SYMONDS, GH .
MANAGEMENT SCIENCE, 1958, 4 (03) :235-263