机构:
Texas A&M Univ, Dept Math, College Stn, TX 77843 USATexas A&M Univ, Dept Math, College Stn, TX 77843 USA
Dykema, Kenneth
[1
]
Sukochev, Fedor
论文数: 0引用数: 0
h-index: 0
机构:
Univ New S Wales, Sch Math & Stat, Kensington, NSW 2033, AustraliaTexas A&M Univ, Dept Math, College Stn, TX 77843 USA
Sukochev, Fedor
[2
]
Zanin, Dmitriy
论文数: 0引用数: 0
h-index: 0
机构:
Univ New S Wales, Sch Math & Stat, Kensington, NSW 2033, AustraliaTexas A&M Univ, Dept Math, College Stn, TX 77843 USA
Zanin, Dmitriy
[2
]
机构:
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[2] Univ New S Wales, Sch Math & Stat, Kensington, NSW 2033, Australia
来源:
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK
|
2015年
/
708卷
关键词:
OPERATORS;
D O I:
10.1515/crelle-2013-0084
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Building on results of Haagerup and Schultz, we decompose an arbitrary operator in a diffuse, finite von Neumann algebra into the sum of a normal operator and an s.o.t.-quasinilpotent operator. We also prove an analogue of Weyl's inequality relating eigenvalues and singular values for operators in a diffuse, finite von Neumann algebra.