A decomposition theorem in II1-factors

被引:16
作者
Dykema, Kenneth [1 ]
Sukochev, Fedor [2 ]
Zanin, Dmitriy [2 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[2] Univ New S Wales, Sch Math & Stat, Kensington, NSW 2033, Australia
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2015年 / 708卷
关键词
OPERATORS;
D O I
10.1515/crelle-2013-0084
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Building on results of Haagerup and Schultz, we decompose an arbitrary operator in a diffuse, finite von Neumann algebra into the sum of a normal operator and an s.o.t.-quasinilpotent operator. We also prove an analogue of Weyl's inequality relating eigenvalues and singular values for operators in a diffuse, finite von Neumann algebra.
引用
收藏
页码:97 / 114
页数:18
相关论文
共 24 条
  • [21] A NOTE ON THE INVARIANT SUBSPACE PROBLEM RELATIVE TO A TYPE II1 FACTOR
    Fang, Junsheng
    Hadwin, Don
    HOUSTON JOURNAL OF MATHEMATICS, 2011, 37 (03): : 879 - 893
  • [22] A new proof of extreme amenability of the unitary group of the hyperfinite II1 factor
    Dowerk, Philip A.
    Thom, Andreas
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2015, 22 (05) : 837 - 841
  • [23] Reducibility of 1-d Schrodinger Equation with Time Quasiperiodic Unbounded Perturbations, II
    Bambusi, D.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 353 (01) : 353 - 378
  • [24] Nucleon form factors and moments of generalized parton distributions using Nf=2+1+1 twisted mass fermions
    Alexandrou, C.
    Constantinou, M.
    Dinter, S.
    Drach, V.
    Jansen, K.
    Kallidonis, C.
    Koutsou, G.
    PHYSICAL REVIEW D, 2013, 88 (01):