LAPLACIANS AND THE CHEEGER CONSTANTS FOR DISCRETE DYNAMICAL SYSTEMS

被引:2
作者
Fernandes, Sara
Gracio, Clara
Ramos, J. Sousa
机构
来源
DIFFERENCE EQUATIONS, SPECIAL FUNCTIONS AND ORTHOGONAL POLYNOMIALS | 2007年
关键词
Discrete Laplacian; Cheeger constant; discrete dynamical system; systole;
D O I
10.1142/9789812770752_0017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider discrete laplacians for iterated maps on the interval and examine their eigenvalues. We have introduced a notion of conductance (Cheeger constant) for a discrete dynamical system, now we study their relations with the spectrum. We compute the systoles and the first eigenvalue of some families of discrete dynamical systems.
引用
收藏
页码:213 / 223
页数:11
相关论文
共 11 条
[1]  
[Anonymous], 1964, T AM MATH SOC, DOI DOI 10.1090/S0002-9947-1964-0161372-1
[2]  
BALACHEFF F, MATHMG0411578
[3]  
Berger M., 1972, Ann. Sci. Ecole Norm. Sup., V5, P1
[4]  
BOLLOBAS B, 1997, MSRI PUBLICATIONS, V31
[5]   ON CHEEGERS INEQUALITY [J].
BROOKS, R ;
PERRY, P ;
PETERSEN, P .
COMMENTARII MATHEMATICI HELVETICI, 1993, 68 (04) :599-621
[6]  
Cvetkovic D., 2005, GRAPH THEORY COMBINA, V131, P85
[7]  
FERNANDES S, 2004, P NDES04
[8]  
GRACIO C, GRAZER MATH BE UNPUB
[9]  
LAMPREIA, 1986, BOLL UN MAT ITAL C, V5, P159
[10]  
MILNOR J, 1988, LECT NOTES MATH, V1342, P465