DEEP NETWORK-BASED FEATURE SELECTION FOR IMAGING GENETICS: APPLICATION TO IDENTIFYING BIOMARKERS FOR PARKINSON'S DISEASE

被引:0
作者
Kim, Mansu [1 ,2 ,4 ]
Won, Ji Hye [1 ,2 ]
Hong, Jisu [1 ,2 ]
Kwon, Junmo [1 ,2 ]
Park, Hyunjin [2 ,3 ]
Shen, Li [4 ]
机构
[1] Sungkyunkwan Univ, Dept Elect & Comp Engn, Seoul, South Korea
[2] Inst for Basic Sci Korea, Ctr Neurosci Imaging Res, Seoul, South Korea
[3] Sungkyunkwan Univ, Sch Elect & Elect Engn, Seoul, South Korea
[4] Univ Penn, Dept Biostat Epidemiol & Informat, Philadelphia, PA 19104 USA
来源
2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020) | 2020年
基金
美国国家卫生研究院; 新加坡国家研究基金会; 美国国家科学基金会;
关键词
Imaging genetics; feature selection; deep learning; Parkinson's disease;
D O I
10.1109/isbi45749.2020.9098471
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Imaging genetics is a methodology for discovering associations between imaging and genetic variables. Many studies adopted sparse models such as sparse canonical correlation analysis (SCCA) for imaging genetics. These methods are limited to modeling the linear imaging genetics relationship and cannot capture the non-linear high-level relationship between the explored variables. Deep learning approaches are underexplored in imaging genetics, compared to their great successes in many other biomedical domains such as image segmentation and disease classification. In this work, we proposed a deep learning model to select genetic features that can explain the imaging features well. Our empirical study on simulated and real datasets demonstrated that our method outperformed the widely used SCCA method and was able to select important genetic features in a robust fashion. These promising results indicate our deep learning model has the potential to reveal new biomarkers to improve mechanistic understanding of the studied brain disorders.
引用
收藏
页码:1920 / 1923
页数:4
相关论文
共 11 条
[1]   Joint sparse canonical correlation analysis for detecting differential imaging genetics modules [J].
Fang, Jian ;
Lin, Dongdong ;
Schulz, S. Charles ;
Xu, Zongben ;
Calhoun, Vince D. ;
Wang, Yu-Ping .
BIOINFORMATICS, 2016, 32 (22) :3480-3488
[2]   Imaging genetics approach to Parkinson's disease and its correlation with clinical score [J].
Kim, Mansu ;
Kim, Jonghoon ;
Lee, Seung-Hak ;
Park, Hyunjin .
SCIENTIFIC REPORTS, 2017, 7
[3]   Deep Feature Selection: Theory and Application to Identify Enhancers and Promoters [J].
Li, Yifeng ;
Chen, Chih-Yu ;
Wasserman, Wyeth W. .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2016, 23 (05) :322-336
[4]   Comprehensive Research Synopsis and Systematic Meta-Analyses in Parkinson's Disease Genetics: The PDGene Database [J].
Lill, Christina M. ;
Roehr, Johannes T. ;
McQueen, Matthew B. ;
Kavvoura, Fotini K. ;
Bagade, Sachin ;
Schjeide, Brit-Maren M. ;
Schjeide, Leif M. ;
Meissner, Esther ;
Zauft, Ute ;
Allen, Nicole C. ;
Liu, Tian ;
Schilling, Marcel ;
Anderson, Kari J. ;
Beecham, Gary ;
Berg, Daniela ;
Biernacka, Joanna M. ;
Brice, Alexis ;
DeStefano, Anita L. ;
Do, Chuong B. ;
Eriksson, Nicholas ;
Factor, Stewart A. ;
Farrer, Matthew J. ;
Foroud, Tatiana ;
Gasser, Thomas ;
Hamza, Taye ;
Hardy, John A. ;
Heutink, Peter ;
Hill-Burns, Erin M. ;
Klein, Christine ;
Latourelle, Jeanne C. ;
Maraganore, Demetrius M. ;
Martin, Eden R. ;
Martinez, Maria ;
Myers, Richard H. ;
Nalls, Michael A. ;
Pankratz, Nathan ;
Payami, Haydeh ;
Satake, Wataru ;
Scott, William K. ;
Sharma, Manu ;
Singleton, Andrew B. ;
Stefansson, Kari ;
Toda, Tatsushi ;
Tung, Joyce Y. ;
Vance, Jeffery ;
Wood, Nick W. ;
Zabetian, Cyrus P. ;
Young, Peter ;
Tanzi, Rudolph E. ;
Khoury, Muin J. .
PLOS GENETICS, 2012, 8 (03)
[5]   Correspondence between fMRI and SNP data by group sparse canonical correlation analysis [J].
Lin, Dongdong ;
Calhoun, Vince D. ;
Wang, Yu-Ping .
MEDICAL IMAGE ANALYSIS, 2014, 18 (06) :891-902
[6]   The Parkinson Disease gene SNCA: Evolutionary and structural insights with pathological implication [J].
Siddiqui, Irum Javaid ;
Pervaiz, Nashaiman ;
Abbasi, Amir Ali .
SCIENTIFIC REPORTS, 2016, 6
[7]   Identifying quantitative trait loci via group-sparse multitask regression and feature selection: an imaging genetics study of the ADNI cohort [J].
Wang, Hua ;
Nie, Feiping ;
Huang, Heng ;
Kim, Sungeun ;
Nho, Kwangsik ;
Risacher, Shannon L. ;
Saykin, Andrew J. ;
Shen, Li .
BIOINFORMATICS, 2012, 28 (02) :229-237
[8]   A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis [J].
Witten, Daniela M. ;
Tibshirani, Robert ;
Hastie, Trevor .
BIOSTATISTICS, 2009, 10 (03) :515-534
[9]   Tissue-specific network-based genome wide study of amygdala imaging phenotypes to identify functional interaction modules [J].
Yao, Xiaohui ;
Yan, Jingwen ;
Liu, Kefei ;
Kim, Sungeun ;
Nho, Kwangsik ;
Risacher, Shannon L. ;
Greene, Casey S. ;
Moore, Jason H. ;
Saykin, Andrew J. ;
Shen, Li .
BIOINFORMATICS, 2017, 33 (20) :3250-3257
[10]   Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks [J].
Zhu, Jun-Yan ;
Park, Taesung ;
Isola, Phillip ;
Efros, Alexei A. .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :2242-2251