From GaN to ZnGa2O4 through a Low-Temperature Process: Nanotube and Heterostructure Arrays

被引:14
作者
Lu, Ming-Yen [1 ,2 ]
Zhou, Xiang [1 ]
Chiu, Cheng-Yao [2 ]
Crawford, Samuel [1 ]
Gradecak, Silvija [1 ]
机构
[1] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[2] Natl Chung Cheng Univ, Grad Inst Optomechatron, Chiayi 62102, Taiwan
基金
美国国家科学基金会;
关键词
gallium nitride (GaN); zinc gallate (ZnGa2O4); heterostructures; nanotubes; hydrothermal method; optical property; SPINEL FINE PARTICLES; NANOWIRE HETEROSTRUCTURES; HYDROTHERMAL SYNTHESIS; CORE-SHELL; THIN-FILMS; GROWTH; BLUE; PHOSPHOR;
D O I
10.1021/am404158f
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We demonstrate a method to synthesize GaN ZnGa2O4 core shell nanowire and ZnGa2O4 nanotube arrays by a low-temperature hydrothermal process using GaN nanowires as templates. Transmission electron microscopy and X-ray photoelectron spectroscopy results show that a ZnGa2O4 shell forms on the surface of GaN nanowires and that the shell thickness is controlled by the time of the hydrothermal process and thus the concentration of Zn ions in the solution. Furthermore, ZnGa2O4 nanotube arrays were obtained by depleting the GaN core from GaN ZnGa2O4 core shell nanowire arrays during the reaction and subsequent etching with HCl. The GaN ZnGa2O4 core shell nanowires exhibit photoluminescence peaks centered at 2.60 and 2.90 eV attributed to the ZnGa2O4 shell, as well as peaks centered at 3.35 and 3.50 eV corresponding to the GaN core. We also demonstrate the synthesis of GaN ZnGa2O4 heterojunction nanowires by a selective formation process as a simple route toward development of heterojunction nanodevices for optoelectronic applications.
引用
收藏
页码:882 / 887
页数:6
相关论文
共 36 条
[11]   Enhanced ultraviolet photoconductivity in semiconducting ZnGa2O4 thin films [J].
Lee, YE ;
Norton, DP ;
Budai, JD ;
Wei, Y .
JOURNAL OF APPLIED PHYSICS, 2001, 90 (08) :3863-3866
[12]  
Li Y. J., 2006, APPL PHYS LETT, P88
[13]   Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors [J].
Li, Yat ;
Xiang, Jie ;
Qian, Fang ;
Gradecak, Silvija ;
Wu, Yue ;
Yan, Hao ;
Yan, Hao ;
Blom, Douglas A. ;
Lieber, Charles M. .
NANO LETTERS, 2006, 6 (07) :1468-1473
[14]   Self-regulation synthesis of nanocrystalline ZnGa2O4 by hydrothermal reaction [J].
Li, YD ;
Duan, XF ;
Liao, HW ;
Qian, YT .
CHEMISTRY OF MATERIALS, 1998, 10 (01) :17-18
[15]   Growth mechanism of GaN nanowires: preferred nucleation site and effect of hydrogen [J].
Lim, Sung K. ;
Crawford, Samuel ;
Gradecak, Silvija .
NANOTECHNOLOGY, 2010, 21 (34)
[16]   Controlled Modulation of Diameter and Composition along Individual III-V Nitride Nanowires [J].
Lim, Sung Keun ;
Crawford, Sam ;
Haberfehlner, Georg ;
Gradecak, Silvija .
NANO LETTERS, 2013, 13 (02) :331-336
[17]   ZnO-ZnS Heterojunction and ZnS Nanowire Arrays for Electricity Generation [J].
Lu, Ming-Yen ;
Song, Jinhui ;
Lu, Ming-Pei ;
Lee, Chung-Yang ;
Chen, Lih-Juann ;
Wang, Zhong Lin .
ACS NANO, 2009, 3 (02) :357-362
[18]   Growth of ZnS nanocombs with ZnO sheath by thermal evaporation [J].
Lu, MY ;
Su, PY ;
Chueh, YL ;
Chen, LJ ;
Chou, LJ .
APPLIED SURFACE SCIENCE, 2005, 244 (1-4) :96-100
[19]   NEW ULTRAVIOLET-TRANSPORT ELECTROCONDUCTIVE OXIDE, ZNGA2O4 SPINEL [J].
OMATA, T ;
UEDA, N ;
UEDA, K ;
KAWAZOE, H .
APPLIED PHYSICS LETTERS, 1994, 64 (09) :1077-1078
[20]   Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes [J].
Qian, F ;
Gradecak, S ;
Li, Y ;
Wen, CY ;
Lieber, CM .
NANO LETTERS, 2005, 5 (11) :2287-2291