Spacings and pair correlations for finite Bernoulli convolutions

被引:7
|
作者
Benjamini, Itai [1 ]
Solomyak, Boris [2 ]
机构
[1] Weizmann Inst Sci, Dept Math, IL-76100 Rehovot, Israel
[2] Univ Washington, Dept Math, Seattle, WA 98195 USA
关键词
FRACTIONAL-PARTS; EXPANSIONS; DIMENSION; SERIES; SETS;
D O I
10.1088/0951-7715/22/2/008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider finite Bernoulli convolutions with a parameter 1/2 < lambda < 1 supported on a discrete point set, generically of size 2(N). These sequences are uniformly distributed with respect to the infinite Bernoulli convolution measure upsilon(lambda) as N -> infinity. Numerical evidence suggests that for a generic lambda, the distribution of spacings between appropriately rescaled points is Poissonian. We obtain some partial results in this direction; for instance, we show that, on average, the pair correlations do not exhibit attraction or repulsion in the limit. On the other hand, for certain algebraic lambda the behaviour is totally different.
引用
收藏
页码:381 / 393
页数:13
相关论文
共 50 条
  • [1] Finite orbits in multivalued maps and Bernoulli convolutions
    Bandt, Christoph
    ADVANCES IN MATHEMATICS, 2018, 324 : 437 - 485
  • [2] On the 'Mandelbrot set' for a pair of linear maps and complex Bernoulli convolutions
    Solomyak, B
    Xu, H
    NONLINEARITY, 2003, 16 (05) : 1733 - 1749
  • [3] Spectra of Bernoulli convolutions and random convolutions
    Fu, Yan-Song
    He, Xing-Gang
    Wen, Zhi-Xiong
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 116 : 105 - 131
  • [4] On symmetric Bernoulli convolutions
    Kawata, T
    AMERICAN JOURNAL OF MATHEMATICS, 1940, 62 : 792 - 794
  • [5] Notes on Bernoulli convolutions
    Solomyak, B
    FRACTAL GEOMETRY AND APPLICATIONS: A JUBILEE OF BENOIT MANDELBROT - ANALYSIS, NUMBER THEORY, AND DYNAMICAL SYSTEMS, PT 1, 2004, 72 : 207 - 230
  • [6] ON THE DIMENSION OF BERNOULLI CONVOLUTIONS
    Breuillard, Emmanuel
    Varju, Peter P.
    ANNALS OF PROBABILITY, 2019, 47 (04): : 2582 - 2617
  • [7] On symmetric Bernoulli convolutions
    Kershner, R
    Wintner, A
    AMERICAN JOURNAL OF MATHEMATICS, 1935, 57 : 541 - 548
  • [8] On random Bernoulli convolutions
    Persson, Tomas
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2010, 25 (02): : 203 - 213
  • [9] On the Hausdorff Dimension of Bernoulli Convolutions
    Akiyama, Shigeki
    Feng, De-Jun
    Kempton, Tom
    Persson, Tomas
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2020, 2020 (19) : 6569 - 6595
  • [10] Spectrality of infinite Bernoulli convolutions
    An, Li-Xiang
    He, Xing-Gang
    Li, Hai-Xiang
    JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 269 (05) : 1571 - 1590