Label-free fluorescence microscopy in fungi

被引:19
作者
Knaus, Helene [1 ,2 ,3 ]
Blab, Gerhard A. [3 ]
van Veluw, G. Jerre [1 ,2 ]
Gerritsen, Hans C. [3 ]
Wosten, Han A. B. [1 ,2 ]
机构
[1] Univ Utrecht, Dept Microbiol, NL-3584 CH Utrecht, Netherlands
[2] Univ Utrecht, Kluyver Ctr Genom Ind Fermentat, NL-3584 CH Utrecht, Netherlands
[3] Univ Utrecht, Debye Inst, NL-3584 CH Utrecht, Netherlands
关键词
Aspergillus; Auto-fluorescence; Fluorescence microscopy; Fungus; Label-free nonlinear microscopy; Metabolism; IN-VIVO; 2-PHOTON-EXCITED FLUORESCENCE; AUTOFLUORESCENCE MICROSCOPY; FILAMENTOUS FUNGI; SPECTROSCOPY; MYCELIUM; MELANIN; DIFFERENTIATION; PROTEINS; GROWTH;
D O I
10.1016/j.fbr.2013.05.003
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Label-free fluorescence microscopy detects fluorescence originating from endogenous fluorophores, such as NAD(P)H, melanin and flavins. The emitted fluorescence (spectrum, lifetime and polarization) is characteristic for the molecule and its environment. In most cases, a specimen contains multiple autofluorescent molecules contributing to the overall fluorescence. Methods have been developed to break down the fluorescence into the contribution of its individual components. As a result, label-free microscopy can map biochemical properties of fluorophores spatially and over time at the level of the organism, tissue and cells. This is of interest for fungal cell biology and development. Moreover, it can be used in biotechnological applications to monitor the metabolic state within a bioreactor or to monitor the formation of secondary metabolites. Combining morphological and biochemical properties can also lead to new developments in fungal taxonomy, biomedical diagnostics, as well as the screening of fungal products such as mushrooms. (C) 2013 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:60 / 66
页数:7
相关论文
共 80 条
[1]   Genetic Control of Biosynthesis and Transport of Riboflavin and Flavin Nucleotides and Construction of Robust Biotechnological Producers [J].
Abbas, Charles A. ;
Sibirny, Andriy A. .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2011, 75 (02) :321-+
[2]  
Arcangeli C, 2000, BIOPOLYMERS, V57, P218, DOI 10.1002/1097-0282(2000)57:4<218::AID-BIP3>3.0.CO
[3]  
2-G
[4]   Fast nonlinear spectral microscopy of in vivo human skin [J].
Bader, Arjen N. ;
Pena, Ana-Maria ;
van Voskuilen, C. Johan ;
Palero, Jonathan A. ;
Leroy, Frederic ;
Colonna, Anne ;
Gerritsen, Hans C. .
BIOMEDICAL OPTICS EXPRESS, 2011, 2 (02) :365-373
[5]   Two-photon-excited fluorescence and two-photon spectrofluoroelectrochemistry of riboflavin [J].
Bi, YH ;
Huang, ZL ;
Liu, B ;
Zou, QJ ;
Yu, JH ;
Zhao, YD ;
Luo, QM .
ELECTROCHEMISTRY COMMUNICATIONS, 2006, 8 (04) :595-599
[6]   Two-photon-excited fluorescence imaging of human RPE cells with a femtosecond Ti:sapphire laser [J].
Bindewald-Wittich, Almut ;
Han, Meng ;
Schmitz-Valckenberg, Steffen ;
Snyder, Sarah R. ;
Giese, Gunter ;
Bille, Josef F. ;
Holz, Frank G. .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2006, 47 (10) :4553-4557
[7]   Hyphal heterogeneity in Aspergillus oryzae is the result of dynamic closure of septa by Woronin bodies [J].
Bleichrodt, Robert-Jan ;
van Veluw, G. Jerre ;
Recter, Brand ;
Maruyama, Jun-ichi ;
Kitamoto, Katsuhiko ;
Wosten, Han A. B. .
MOLECULAR MICROBIOLOGY, 2012, 86 (06) :1334-1344
[8]   NMR lipid profile of Agaricus bisporus [J].
Bonzom, PMA ;
Nicolaou, A ;
Zloh, M ;
Baldeo, W ;
Gibbons, WA .
PHYTOCHEMISTRY, 1999, 50 (08) :1311-1321
[9]   In vivo imaging of unstained tissues using a compact and flexible multiphoton microendoscope [J].
Brown, Christopher M. ;
Rivera, David R. ;
Pavlova, Ina ;
Ouzounov, Dimitre G. ;
Williams, Wendy O. ;
Mohanan, Sunish ;
Webb, Watt W. ;
Xu, Chris .
JOURNAL OF BIOMEDICAL OPTICS, 2012, 17 (04)
[10]   Fungal melanin detection by the use of copper sulfide-silver [J].
Butler, MJ ;
Gardiner, RB ;
Day, AW .
MYCOLOGIA, 2005, 97 (02) :312-319