Semiclassical analysis of a two-electron quantum dot in a magnetic field: Dimensional phenomena

被引:50
作者
Nazmitdinov, RG [1 ]
Simonovic, NS
Rost, JM
机构
[1] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
[2] Joint Inst Nucl Res, Bogoliubov Lab Theoret Phys, Dubna 141980, Russia
关键词
D O I
10.1103/PhysRevB.65.155307
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
It is shown that with the inclusion of the vertical extension of a quantum dot the experimental findings of Ashoori [Phys. Rev. Lett. 71, 613 (1993)] can be modeled consistently with a parabolic confinement. Furthermore, the magnetic properties such as the magnetic moment and the susceptibility are sensitive to the presence and strength of a vertical confinement. Using a semiclassical approach the calculation of the eigenvalues reduces to simple quadratures providing a transparent and almost analytical quantization of the three-dimensional quantum dot energy levels that differ from the exact energies only by a few percent. While the dynamics for three-dimensional axially symmetric two-electron quantum dot with parabolic confinement potentials is in general nonseparable due to the Coulomb interaction we have found an exact separability for specific values of the magnetic field.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 30 条
[1]   The statistical theory of quantum dots [J].
Alhassid, Y .
REVIEWS OF MODERN PHYSICS, 2000, 72 (04) :895-968
[2]   N-ELECTRON GROUND-STATE ENERGIES OF A QUANTUM-DOT IN MAGNETIC-FIELD [J].
ASHOORI, RC ;
STORMER, HL ;
WEINER, JS ;
PFEIFFER, LN ;
BALDWIN, KW ;
WEST, KW .
PHYSICAL REVIEW LETTERS, 1993, 71 (04) :613-616
[3]   Electrons in artificial atoms [J].
Ashoori, RC .
NATURE, 1996, 379 (6564) :413-419
[4]   Exploitation of optical interconnects in future server architectures [J].
Benner, AF ;
Ignatowski, M ;
Kash, JA ;
Kuchta, DM ;
Ritter, MB .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2005, 49 (4-5) :755-775
[5]   Quantum states of interacting electrons in a real quantum dot [J].
Bruce, NA ;
Maksym, PA .
PHYSICAL REVIEW B, 2000, 61 (07) :4718-4726
[6]  
Chakraborty T., 1999, QUANTUM DOTS
[7]  
Darwin CG, 1931, P CAMB PHILOS SOC, V27, P86
[8]   Ground state spin oscillations of a two-electron quantum dot in a magnetic field [J].
Dineykhan, M ;
Nazmitdinov, RG .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1999, 11 (11) :L83-L88
[9]   Two-electron quantum dot in a magnetic field: Analytical results [J].
Dineykhan, M ;
Nazmitdinov, RG .
PHYSICAL REVIEW B, 1997, 55 (20) :13707-13714
[10]   Note to the Quantification of the harmonic Oscillator in a Magnetic Field [J].
Fock, V. .
ZEITSCHRIFT FUR PHYSIK, 1928, 47 (5-6) :446-448