Relations between the mountain pass theorem and local minima

被引:135
作者
Bonanno, Gabriele [1 ]
机构
[1] Univ Messina, Fac Engn, Math Sect, Dept Sci Engn & Architecture, I-98166 Messina, Italy
关键词
Variational method; critical point; mountain pass; elliptic equation; AMBROSETTI;
D O I
10.1515/anona-2012-0003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Existence results of two critical points for functionals unbounded from below are established after pointing out a characterization of the mountain pass geometry. Applications to elliptic Dirichlet problems are then presented.
引用
收藏
页码:205 / 220
页数:16
相关论文
共 18 条
[1]  
Ambrosetti A., 2007, NONLINEAR ANAL SEMIL
[2]  
[Anonymous], 2010, Encyclopedia of Mathematics and its Applications
[3]  
[Anonymous], 2000, CONSTRCTIVE EXPT NON, V27, P275
[4]  
Bonanno G., PREPRINT
[5]   A critical point theorem via the Ekeland variational principle [J].
Bonanno, Gabriele .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (05) :2992-3007
[6]  
Ghoussoub N., 1993, CAMBRIDGE TRACTS MAT, V107
[7]   The existence of a nontrivial solution to a nonlinear elliptic boundary value problem of p-Laplacian type without the Ambrosetti-Rabinowitz condition [J].
Li, Gongbao ;
Yang, Caiyun .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (12) :4602-4613
[8]  
MARANO SA, COMMUN PURE IN PRESS
[9]   Superlinear problems without Ambrosetti and Rabinowitz growth condition [J].
Miyagaki, O. H. ;
Souto, M. A. S. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (12) :3628-3638
[10]  
Motreanu D., 2003, NONCON OPTIM ITS APP, V67