Optimal move blocking strategies for model predictive control

被引:45
作者
Shekhar, Rohan C. [1 ]
Manzie, Chris [1 ]
机构
[1] Univ Melbourne, Dept Mech Engn, Melbourne, Vic 3010, Australia
基金
澳大利亚研究理事会;
关键词
Move blocking; Model predictive control; Complexity reduction; Parametric optimisation; ALGORITHM;
D O I
10.1016/j.automatica.2015.07.030
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a systematic methodology for designing move blocking strategies to reduce the complexity of a model predictive controller for linear systems, with explicit optimisation of the blocking structure using mixed-integer programming. Given a move-blocked predictive controller with a terminal invariant set constraint for stability, combined with an input parameterisation to preserve recursive feasibility, two different optimisation problems are formulated for blocking structure selection. The first problem calculates the maximum achievable reduction in the number of input decision variables and prediction horizon length, subject to the controller's region of attraction containing a specified subset of the state space. Then, for a given fixed horizon length and block count determined by hardware capabilities, the second problem seeks to maximise the volume of an inner approximation to the region of attraction. Numerical examples show that the resulting blocking structures are able to optimally reduce controller complexity and improve region of attraction volume. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:27 / 34
页数:8
相关论文
共 27 条
[1]  
[Anonymous], 2000, THESIS U CAMBRIDGE
[2]   The explicit linear quadratic regulator for constrained systems [J].
Bemporad, A ;
Morari, M ;
Dua, V ;
Pistikopoulos, EN .
AUTOMATICA, 2002, 38 (01) :3-20
[3]   Control of systems integrating logic, dynamics, and constraints [J].
Bemporad, A ;
Morari, M .
AUTOMATICA, 1999, 35 (03) :407-427
[4]  
Boyd Stephen, 1994, LINEAR MATRIX INEQUA
[5]   Move blocking strategies in receding horizon control [J].
Cagienard, R. ;
Grieder, P. ;
Kerrigan, E. C. ;
Morari, M. .
JOURNAL OF PROCESS CONTROL, 2007, 17 (06) :563-570
[6]  
Dantzig GB, 1973, J COMBINATORIAL TH A, V14, P288, DOI [10.1016/0097-3165(73)90004-6, DOI 10.1016/0097-3165(73)90004-6]
[7]   An online active set strategy to overcome the limitations of explicit MPC [J].
Ferreau, H. J. ;
Bock, H. G. ;
Diehl, M. .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2008, 18 (08) :816-830
[8]   qpOASES: a parametric active-set algorithm for quadratic programming [J].
Ferreau, Hans Joachim ;
Kirches, Christian ;
Potschka, Andreas ;
Bock, Hans Georg ;
Diehl, Moritz .
MATHEMATICAL PROGRAMMING COMPUTATION, 2014, 6 (04) :327-363
[9]  
Goebel G., 2014, P 19 IFAC WORLD C
[10]   Least-restrictive move-blocking model predictive control [J].
Gondhalekar, Ravi ;
Imura, Jun-ichi .
AUTOMATICA, 2010, 46 (07) :1234-1240