Hybrid neural modeling of bioprocesses using functional link networks

被引:15
|
作者
Harada, LHP [1 ]
Da Costa, AC [1 ]
Maciel, R [1 ]
机构
[1] Univ Estadual Campinas, FEQ, DPQ, BR-13081970 Campinas, SP, Brazil
关键词
extractive alcoholic fermentation; functional link networks; hybrid model; bioprocess; modeling;
D O I
10.1385/ABAB:98-100:1-9:1009
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The objective of this work was to develop a model for an extractive ethanol fermentation in a simple and rapid way. This model must be sufficiently reliable to be used for posterior optimization and control studies. A hybrid neural model was developed, combining mass and energy balances with neural networks, which describe the process kinetics. To determine the best model, two structures of neural networks were compared: the functional link networks and the feedforward neural networks. The two structures are shown to describe well the process kinetics, and the advantages of using the functional link networks are discussed.
引用
收藏
页码:1009 / 1023
页数:15
相关论文
共 50 条
  • [1] Hybrid neural modeling of bioprocesses using functional link networks
    Layse H. P. Harada
    Aline C. da Costa
    Rubens Maciel Filho
    Applied Biochemistry and Biotechnology, 2002, 98-100 : 1009 - 1023
  • [2] Modeling hysteresis using hybrid method of continuous transformation and neural networks
    Tong, Z
    Tan, YH
    Zeng, XW
    SENSORS AND ACTUATORS A-PHYSICAL, 2005, 119 (01) : 254 - 262
  • [3] Modeling of neural systems and networks by functional differential equations
    Ermolaev, Valeriy
    Kropotov, Yuri
    Proskuryakov, Alexander
    2020 VI INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND NANOTECHNOLOGY (IEEE ITNT-2020), 2020,
  • [4] Hybrid neural-networks modeling of an enzymatic membrane reactor
    Al-Yemni, M
    Yang, RYK
    JOURNAL OF THE CHINESE INSTITUTE OF ENGINEERS, 2005, 28 (07) : 1061 - 1067
  • [5] Omics-driven hybrid dynamic modeling of bioprocesses with uncertainty estimation
    Espinel-Rios, Sebastian
    Lopez, Jose Montan
    Avalos, Jose L.
    BIOCHEMICAL ENGINEERING JOURNAL, 2025, 216
  • [6] Modeling Heat Exchanger Using Neural Networks
    Biyanto, Totok R.
    Ramasamy, M.
    Zabiri, H.
    ICIAS 2007: INTERNATIONAL CONFERENCE ON INTELLIGENT & ADVANCED SYSTEMS, VOLS 1-3, PROCEEDINGS, 2007, : 120 - 124
  • [7] Modeling flexibility using artificial neural networks
    Förderer K.
    Ahrens M.
    Bao K.
    Mauser I.
    Schmeck H.
    Energy Informatics, 1 (Suppl 1) : 73 - 91
  • [8] Evolution of functional link networks
    Sierra, A
    Macías, JA
    Corbacho, F
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2001, 5 (01) : 54 - 65
  • [9] Modeling and prediction of bioprocesses using multiple regression analysis
    Teeradakorn, S
    Kishimoto, M
    Yoshida, T
    COMPUTER APPLICATIONS IN BIOTECHNOLOGY 1998: HORIZON OF BIOPROCESS SYSTEMS ENGINEERING IN 21ST CENTURY, 1998, : 209 - 214
  • [10] Transient electromagnetic modeling using recurrent neural networks
    Sharma, H
    Zhang, QJ
    2005 IEEE MTT-S International Microwave Symposium, Vols 1-4, 2005, : 1597 - 1600