Stability analysis of distributed order of Hilfer nonlinear systems

被引:6
作者
Fernandez-Anaya, G. [1 ]
Quezada-Tellez, L. A. [1 ]
Franco-Perez, L. [2 ]
机构
[1] Univ Iberoamer, Dept Fis & Matemat, Prol Paseo Reforma 880, Mexico City, DF, Mexico
[2] Univ Autonoma Metropolitana Cuajimalpa, Dept Matemat Aplicadas & Sistemas, Ave Vasco de Quiroga 4871, Mexico City, DF, Mexico
关键词
Hilfer distributed order derivative; inequalities; Lyapunov stability; FRACTIONAL DIFFUSION; LYAPUNOV FUNCTIONS; TIME; EQUATIONS; EXISTENCE;
D O I
10.1002/mma.7017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For Hilfer derivatives of the product of two functions, we present equations and inequalities, generalizing well-known results for Caputo and Riemann-Liouville derivatives. Using the Laplace transformation, we introduce a generalized distributed Mittag-Leffler-Hilfer stability and show two results for like-Lyapunov stability. We also extend equations and inequalities for the product of two functions of Hilfer derivatives of distributed order. Finally, we give some consequences and examples that illustrate the theory.
引用
收藏
页码:4137 / 4155
页数:19
相关论文
共 66 条
[1]   Lyapunov functions for fractional order systems [J].
Aguila-Camacho, Norelys ;
Duarte-Mermoud, Manuel A. ;
Gallegos, Javier A. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (09) :2951-2957
[2]   Caputo-Fabrizio fractional derivatives modeling of transient MHD Brinkman nanoliquid: Applications in food technology [J].
Ali, Farhad ;
Ali, Farman ;
Sheikh, Nadeem Ahmad ;
Khan, Ilyas ;
Nisar, Kottakkaran Sooppy .
CHAOS SOLITONS & FRACTALS, 2020, 131
[3]   Analyzing transient response of the parallel RCL circuit by using the Caputo-Fabrizio fractional derivative [J].
Alizadeh, Shahram ;
Baleanu, Dumitru ;
Rezapour, Shahram .
ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
[4]   MAXIMUM PRINCIPLE FOR CERTAIN GENERALIZED TIME AND SPACE FRACTIONAL DIFFUSION EQUATIONS [J].
Alsaedi, Ahmed ;
Ahmad, Bashir ;
Kirane, Mokhtar .
QUARTERLY OF APPLIED MATHEMATICS, 2015, 73 (01) :163-175
[5]  
[Anonymous], 2018, Int J Pure Appl Math
[6]   Time distributed-order diffusion-wave equation. II. Applications of Laplace and Fourier transformations [J].
Atanackovic, Teodor M. ;
Pilipovic, Stevan ;
Zorica, Dusan .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 465 (2106) :1893-1917
[7]   On a fractional distributed-order oscillator [J].
Atanackovic, TM ;
Budincevic, M ;
Pilipovic, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (30) :6703-6713
[8]   Distributed-order fractional wave equation on a finite domain. Stress relaxation in a rod [J].
Atanackovica, T. M. ;
Pilipovic, S. ;
Zorica, D. .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2011, 49 (02) :175-190
[9]  
Bagley R.L., 2000, INT J APPL MATH, V2, P965
[10]   A Chebyshev spectral method based on operational matrix for fractional differential equations involving non-singular Mittag-Leffler kernel [J].
Baleanu, D. ;
Shiri, B. ;
Srivastava, H. M. ;
Al Qurashi, M. .
ADVANCES IN DIFFERENCE EQUATIONS, 2018,